Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gamma-ray bursts from high-velocity neutron stars

Abstract

RECENT observations with the BATSE instrument on the Compton Gamma Ray Observatory show that the distribution of γ-ray bursts is isotropic but radially non-uniform1. Spectral features, time histories and the presence of X-ray tails suggest that the bursts arise from galactic neutron stars2, but low-velocity neutron stars born in the galactic disk would be concentrated towards the galactic plane3,4, which would not fit the BATSE results. Neutron stars born with velocities greater than 800 km s−1 will, however, escape from the Galaxy's gravitational field. We show here that a population of such objects can fit the γ-ray burst distributions found by BATSE and also the Pioneer Venus Orbiter5, although two important conditions must be met: the high-velocity neutron stars should turn on as burst sources only after some time (perhaps after they have ceased to be radiopulsars), and the low-velocity neutron stars must rarely generate γ-ray bursts. The observed correlation6–8 in pulsars between magnetic moment and velocity may provide a physical cause for the difference in bursting properties between the two populations. Our model implies that the brightest bursts, with fluxes 3 × 10−5 erg cm−2s−1, will be anisotropically distributed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meegan, C. A. et al. Nature 355, 143–145 (1992).

    Article  ADS  Google Scholar 

  2. Higdon, J. C. & Lingenfelter, R. E. A. Rev. Astr. Astrophys. 28, 401–436 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Dermer, C. D. & Hurley, K. C. Publ. astr. Soc. Pac. 103, 774–776 (1991).

    Article  ADS  Google Scholar 

  4. Paczyński, B. Astrophys. J. 348, 485–494 (1990).

    Article  ADS  Google Scholar 

  5. Chuang, K. W. et al. Astrophys. J. 391, 242–245 (1992).

    Article  ADS  Google Scholar 

  6. Lyne, A. G., Anderson, B. & Salter, M. J. Mon. Not. R. astr. Soc. 201, 503–520 (1982).

    Article  ADS  Google Scholar 

  7. Cordes, J. M. Astrophys. J. 311, 183–196 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Stollman, G. M. & van den Heuvel, E. P. J. Astr. Astrophys. 162, 87–94 (1986).

    ADS  Google Scholar 

  9. Liang, E. P. & Petrosian, V. (eds) Gamma Ray Bursts (AIP, New York, 1986).

  10. Fomalont, E. B. et al. Mon. Not. R. astr. Soc. (in the press).

  11. Harrison, P. A., Lyne, A. G. & Anderson, B. Mon. Not. R. astr. Soc. (in the press).

  12. Frail, D. A. & Kulkarni, S. R. Nature 352, 785–787 (1991).

    Article  ADS  Google Scholar 

  13. Bhattacharya, D. et al. Astr. Astrophys. 254, 198–212 (1992).

    ADS  Google Scholar 

  14. Michel, F. C. Theory of Neutron Star Magnetospheres (Univ. Of Chicago, London, 1990).

    Google Scholar 

  15. Shklovskii, I. S. & Mitrofanov, I. G. Mon. Not. R. astr. Soc. 212, 545–551 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Dermer, C. D. & Li, H. in Huntsville Workshop on Gamma-Ray Bursts (eds Paciesas, W. & Fishman, G.) (AIP, in the press).

  17. Harwit, M. Astrophysical Concepts (Springer, New York, 1988).

    Book  Google Scholar 

  18. Tully, R. B. & Fisher, J. R. Nearby Galaxies Catalog (Cambridge Univ. Press, New York, 1987).

    Google Scholar 

  19. Meegan, C. A. et al. IAU Telegram No. 5478 (18 March 1992).

  20. Duncan, R. C. & Thompson, C. Astrophys J. 392, L9–L13 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Bailes, M. Astrophys. J. 342, 917–927 (1989).

    Article  ADS  Google Scholar 

  22. Salvati, M. & Pacini, F. in The Origin and Evolution of Neutron Stars (eds Helfand, D. J. & Huang, J.-H.) 79–89 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  23. BATSE News Service BNEWS Report (12 February 1992).

  24. Fenimore, E. E. et al. Nature 357, 140–141 (1992).

    Article  ADS  Google Scholar 

  25. Hartmann, D. & Epstein, R. I. Astrophys. J. 346, 960–966 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Higdon, J. C. & Schmidt, M. Astrophys. J. 355, 13–17 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Liang, E. P. Astrophys. J. 380, L55–L58 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Liang, E. P. in Gamma Ray Line Astrophysics (eds Durouchoux, P. & Prantzos, N.) 380–394 (AIP, New York, 1991).

    Google Scholar 

  29. Lingenfelter, R. E. & Higdon, J. C. Nature 356, 132–133 (1992).

    Article  ADS  Google Scholar 

  30. Brainerd, J. J. Nature 355, 522–524 (1992).

    Article  ADS  Google Scholar 

  31. Paczyński, B. Acta astr. 41, 157–167 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Dermer, C. Gamma-ray bursts from high-velocity neutron stars. Nature 359, 514–516 (1992). https://doi.org/10.1038/359514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359514a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing