Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resolution of magnetic flux tubes on the Sun

Abstract

MAGNETIC flux at the surface of the Sun is predominantly concentrated in discrete areas with kilogauss field strengths1. Except for sunspots, these areas are too small to have been resolved by conventional observations. These magnetic flux tubes are an essential part of the physics of the activity and heating of the outer atmosphere of the Sun and other late-type stars2, but although their average properties have been studied in considerable detail3,4, direct observations of them have been lacking because of turbulence in the Earth's atmosphere, which limits resolution to 400 km. Using a newly developed technique of speckle inter-ferometry5, we have obtained simultaneous direct observations of the white-light and magnetic field signature of flux tubes. Individual flux tubes are seen, with resolved diameters of 200 km and continuum brightness contrast of at least +30%. Magnetic features larger than 300 km in size tend, however, to be darker than their surroundings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stenflo, J. O. Solar Phys. 32, 41–63 (1973).

    Article  ADS  Google Scholar 

  2. Spruit, H. C. & Roberts, B. Nature 304, 401–406 (1983).

    Article  ADS  Google Scholar 

  3. Stenflo, J. O. Astr. Astrophys. Rev. 1, 3–48 (1989).

    Article  ADS  Google Scholar 

  4. Solanki, S. K. in Solar Photosphere: Structure, Convection, and Magnetic Fields IAU Symp. 138 (ed. Stenflo, J. O.) 103–120 (Kluwer, Dordrecht, 1990).

  5. Keller, C. U. & von der Lühe, O. Astr. Astrophys. 261, 321–328 (1992).

    ADS  Google Scholar 

  6. Frazier, E. N. & Stenflo, J. O. Solar Phys. 27, 330–346 (1972).

    Article  ADS  Google Scholar 

  7. Mehltretter, J. P. Solar Phys. 38, 43–57 (1974).

    Article  ADS  Google Scholar 

  8. Muller, R. Solar Phys. 85, 113–121 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Schüssler, M. & Solanki, S. K. Astr. Astrophys. 192, 338–342 (1988).

    ADS  Google Scholar 

  10. Muller, R., Roudier, Th. & Hulot, J. C. Solar Phys. 119, 229–243 (1989).

    Article  ADS  Google Scholar 

  11. Keller, C. U., Solanki, S. K., Steiner, O. & Stenflo, J. O. Astr. Astrophys. 233, 583–597 (1990).

    ADS  CAS  Google Scholar 

  12. Dunn, R. B. & Zirker, J. B. Solar Phys. 33, 281–304 (1973).

    ADS  Google Scholar 

  13. Title, et al. in Physics of Magnetic Flux Ropes (eds Russell, C. T., Priest, E. R. & Lee, L. C.), 171–179 (Am. Geophys. Un., Washington DC, 1990).

    Book  Google Scholar 

  14. Muller, R. & Keil, S. L. Solar Phys. 87, 243–250 (1983).

    Article  ADS  Google Scholar 

  15. Schüssler, M. in Solar Photosphere: Structure. Convection, and Magnetic Fields, IAU Symp. 138 (ed. Stenflo, J. O.), 161–179 (Kluwer, Dordrecht, 1990).

  16. Simon, G. W. & Zirker, J. B. Solar Phys. 35, 331–342 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Beckers, J. M. & Schröter, E. H. Solar Phys. 4, 142–164 (1968).

    Article  ADS  Google Scholar 

  18. Zirin, H. & Wang, H. Astrophys. J. 385, L27–L29 (1992).

    Article  ADS  Google Scholar 

  19. Spruit, H. C. & Zwaan, C. Solar Phys. 70, 207–228 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Knölker, M. & Schüssler, M. Astr. Astrophys. 202, 275–283 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, C. Resolution of magnetic flux tubes on the Sun. Nature 359, 307–308 (1992). https://doi.org/10.1038/359307a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359307a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing