Structure of the pancreatic lipase–procolipase complex

Article metrics

Abstract

INTERFACIAL adsorption of pancreatic lipase is strongly dependent on the physical chemical properties of the lipid surface. These properties are affected by amphiphiles such as phospholipids and bile salts. In the presence of such amphiphiles, lipase binding to the interface requires a protein cofactor, colipase1–3. We obtained crystals of the pancreatic lipase–procolipase complex and solved the structure at 3.04 Å resolution. Here we describe the structure of procolipase, which essentially consists of three 'fingers' and is topologically comparable to snake toxins4,5. The tips of the fingers contain most of the hydrophobic amino acids and presumably form the interfacial binding site. Lipase binding occurs at the opposite side to this site and involves polar interactions. Determination of the three-dimensional structure of pancreatic lipase has revealed the presence of two domains: an amino-terminal domain, at residues 1–336 containing the active site and a carboxy-terminal domain at residues 337–449 (ref. 6). Procolipase binds exclusively to the C-terminal domain of lipase. No conformational change in the lipase molecule is induced by the binding of procolipase.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Verger, R. Lipases 83–150 (eds Borgström, B. & Brockman, H.) (Elsevier, Amsterdam, 1984).

  2. 2

    Borgström, B. & Erlanson-Albertsson, C. in Lipases (eds Borgström, B. & Brockman, H.) 151–183 (Elsevier, Amsterdam, 1984).

  3. 3

    Sarda, L. in Lipases: Structure, Mechanism and Genetic Engineering Vol. 16 (eds Alberghima et al) 145–155 (GBF monographs, VCH, Weinheim, 1991).

  4. 4

    Rees, B. et al. Proc. natn Acad. Sci. USA. 84, 3132–3136 (1987).

  5. 5

    Bourne, P. E. et al. Eur. J. Biochem. 153, 521–527 (1985).

  6. 6

    Winkler, F. K., D'Arcy, A. & Hunziker, W. Nature 343, 771–774 (1990).

  7. 7

    Rathelot, J. et al. Biochimie 63, 227–234 (1981).

  8. 8

    Erlanson, C., Charles, M., Astier, M. & Desnuelle, P. Biochim. blophys. Acta 259, 198–203 (1974).

  9. 9

    Donner, J., Spink, C., Borgström, B. & Sjöholm, I. Biochemistry 15, 5413–5417 (1976).

  10. 10

    Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

  11. 11

    Janin, J. & Chothia, C. J. biol. Chem. 256, 16027–16030 (1990).

  12. 12

    Abousalham, A., Chaillan, C., Kerfelec, B., Foglizzo, E. & Chapus, C. Protein Engng. 5, 105–111 (1992).

  13. 13

    Cozzone, P. J., Canioni, P., Sarda, L. & Kaptein, R. Eur. J. Biochem. 114, 119–126 (1984).

  14. 14

    Mclntyre, J. C., Hundley, P. & Behnke, W. D. Biochem. J. 245, 821–829 (1987).

  15. 15

    Brzozowski, A. M. et al. Nature 351, 491–494 (1991).

  16. 16

    Derewenda, U., Brzozowski, A. M., Lawson, D. M. & Derewenda, Z. S. Biochemistry 31, 1532–1541 (1992).

  17. 17

    Brünger, A. T. Acta crystallogr. 46, 46–57 (1990).

  18. 18

    Roussel, A. & Cambillau, C. in Silicon Graphics Directory (Silicon Graphics, Mountain View, California, 1991).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.