Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Association between GTPase activators for Rho and Ras families

Abstract

THE ras-related low-molecular-mass GTPases participate in signal transduction involving a variety of cellular functions, including cell-cycle progression, cellular differentiation, cytoskeletal organization, protein transport and secretion1,2. The cycling of these proteins between GTP-bound and GDP-bound states is partially controlled by GTPase activating proteins (GAPs) which stimulate the intrinsic GTP-hydrolysing activity of specific GTPases1–6. The ras GTPase-activating protein (Ras-GAP) forms a complex with a second protein, p190 (Mr 190,000), in growth-factor stimulated and tyrosine-kinase transformed cells7,8. At its carboxy-terminal end, p190 contains a region that is conserved in the breakpoint cluster region, n-chimaerin, and Rho-GAP9. Each of these three proteins exhibits GAP activity for at least one member of the rho family of small GTPases10. We have tested recombinant p190 protein for GAP activity on GTPases of the ras, rho and rab families, and show here that p190 can function as a GAP specifically for members of the rho family. Consequently, the formation of a complex between Ras-GAP and p190 in growth-factor stimulated cells may allow the coupling of signalling pathways that involve ras and rho GTPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Hall, A. Science 249, 635–640 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Evans, T., Hart, M. J. & Cerione, R. A. Curr. Opin. Cell Biol. 3, 185–191 (1991).

    Article  CAS  Google Scholar 

  4. Lowy, D. R., Zhang, K., DeClue, J. E. & Willumsen, B. M. Trends Genet. 7, 346–351 (1991).

    Article  CAS  Google Scholar 

  5. Downward, J. Curr. Opin. Genet. Dev. 2, 13–18 (1992).

    Article  CAS  Google Scholar 

  6. Fry, M. J. Curr. Biol. 7, 78–80 (1992).

    Article  Google Scholar 

  7. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Nature 343, 377–381 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Moran, M., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Molec. cell. Biol. 11, 1804–1812 (1991).

    Article  CAS  Google Scholar 

  9. Settleman, J., Narasimhan, V., Foster, L. C. & Weinberg, R. A. Cell 69, 539–549 (1992).

    Article  CAS  Google Scholar 

  10. Diekmann, D. et al. Nature 351, 400–402 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Trahey, M. & McCormick, F. Science 242, 1697–1700 (1987).

    Article  ADS  Google Scholar 

  12. Vogel, U. S. et al. Nature 335, 90–93 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Otsu, M. et al. Cell 65, 91–104 (1991).

    Article  CAS  Google Scholar 

  14. Paterson, H. F. et al. J. Cell Biol. 111, 1001–1007 (1990).

    Article  CAS  Google Scholar 

  15. Chardin, P. et al. EMBO J. 8, 1087–1092 (1989).

    Article  CAS  Google Scholar 

  16. Adams, A. E. M., Johnson, D. J., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  Google Scholar 

  17. Hart, M. J., Polakis, P. G., Evans, T. & Cerione, R. A. J. biol. Chem. 265, 5990–5001 (1990).

    CAS  PubMed  Google Scholar 

  18. Gross, M. et al. Molec. cell. Biol. 5, 1015–1024 (1985).

    Article  CAS  Google Scholar 

  19. Trahey, M. et al. Molec. cell. Biol. 7, 541–544 (1987).

    Article  CAS  Google Scholar 

  20. Frech, M. et al. Science 249, 169–171 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Lerosey, I., Chardin, P., deGunzberg, J. & Tavitian, A. J. biol. Chem. 266, 4315–4321 (1991).

    CAS  PubMed  Google Scholar 

  22. Frech, M., Schlichting, I., Wittinghofer, A. & Chardin, P. J. biol. Chem. 265, 6353–6359 (1990).

    CAS  PubMed  Google Scholar 

  23. Garrett, M. D., Self, A. J., van Oers, C. & Hall, A. J. biol. Chem. 264, 10–13 (1989).

    CAS  Google Scholar 

  24. Baker, D., Wuestehube, I., Schekman, R., Botstein, D. & Segev, N. Proc. natn. Acad. Sci. U.S.A. 87, 355–359 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Zahraoui, A., Touchet, N., Chardin, P. & Tavitian, A. J. biol. Chem. 264, 12394–12401 (1989).

    CAS  Google Scholar 

  26. McCoy, M. S., Bargman, C. I. & Weinberg, R. A. Molec. cell. Biol. 4, 1577–1582 (1984).

    Article  CAS  Google Scholar 

  27. Chardin, P. & Tavitian, A. Nucleic. Acids Res. 17, 4380 (1989).

    Article  CAS  Google Scholar 

  28. Tucker, J. et al. EMBO J. 5, 1351–1358 (1986).

    Article  CAS  Google Scholar 

  29. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  30. Cicchetti, P., Mayer, B. J., Thiel, G. & Baltimore, D. Science 257, 803–806 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Settleman, J., Albright, C., Foster, L. et al. Association between GTPase activators for Rho and Ras families. Nature 359, 153–154 (1992). https://doi.org/10.1038/359153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing