Letter | Published:

Volcanic winter and accelerated glaciation following the Toba super-eruption

Nature volume 359, pages 5052 (03 September 1992) | Download Citation

Subjects

Abstract

THE eruption of Toba in Sumatra 73,500 years ago was the largest known explosive volcanic event in the late Quaternary1. It could have lofted about 1015 g each of fine ash and sulphur gases to heights of 27–37 km, creating dense stratospheric dust and aerosol clouds. Here we present model calculations that investigate the possible climatic effects of the volcanic cloud. The increase in atmospheric opacity might have produced a 'volcanic winter'2—a brief, pronounced regional and perhaps hemispheric cooling caused by the volcanic dust—followed by a few years with maximum estimated annual hemispheric surface-temperature decreases of 3–5 °C. The eruption occurred during the stage 5a-4 transition of the oxygen isotope record, a time of rapid ice growth and falling sea level3. We suggest that the Toba eruption may have greatly accelerated the shift to glacial conditions that was already underway, by inducing perennial snow cover and increased sea-ice extent at sensitive northern latitudes. As the onset of climate change may have helped to trigger the eruption itself4, we propose that the Toba event may exemplify a more general climate–volcano feedback mechanism.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Geology 19, 200–203 (1991).

  2. 2.

    , & A. Rev. Earth planet. Sci. 16, 73–99 (1988).

  3. 3.

    et al. Quat Res. 7, 1–29 (1987).

  4. 4.

    , & Science 206, 826–828 (1979).

  5. 5.

    & J. Geology 7, 240–244 (1979).

  6. 6.

    & Nature 350, 225–227 (1991).

  7. 7.

    , & J. geophys. Res. 94, 11165–11174 (1989).

  8. 8.

    , , & Geophys. Res. Lett. 13, 725–728 (1986).

  9. 9.

    & Am. geophys. Un. geophys. Monogr. 52, 31–52 (1989).

  10. 10.

    , , , & Science 247, 166–170 (1990).

  11. 11.

    , & Nature 308, 21–25 (1984).

  12. 12.

    National Research Council The Effects on the Atmosphere of a Major Nuclear Exchange (National Academy of Sciences, Washington DC, 1985).

  13. 13.

    & Science 204, 173–175 (1979).

  14. 14.

    Quat. Res. 29, 142–152 (1988).

  15. 15.

    , , , & Quat. Res. 2, 363–367 (1972).

  16. 16.

    & in Late Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and West Greenland (ed. Andrews, J. T.) 309–327 (Allen and Unwin, London, 1985).

  17. 17.

    & Science 215, 159–161 (1982).

  18. 18.

    Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).

  19. 19.

    & Science 203, 168–171 (1979).

  20. 20.

    et al. Nature 329, 403–407 (1987).

  21. 21.

    et al. Nature 329, 408–414 (1987).

  22. 22.

    , & Nature 325, 318–321 (1987).

  23. 23.

    Nature 334, 333–335 (1988).

  24. 24.

    , & Nature 334, 418–420 (1988).

  25. 25.

    Arct. Alp. Res. 3, 331–344 (1971).

  26. 26.

    & A. Rev. Earth planet. Sci. 6, 205–228 (1978).

  27. 27.

    J. appl. Meteorol. 14, 137–152 (1975).

  28. 28.

    Quat. Res. 13, 153–159 (1980).

  29. 29.

    , & Palaeogeogr. Palaeoclimatol. Palaeoecol. 64, 69–78 (1988).

  30. 30.

    Clim. Change 5, 111–113 (1983).

  31. 31.

    Syllogeus 55, 147–190 (1985).

  32. 32.

    et al. Phil. Trans. R. Soc. Lond. A39, 249–261 (1989).

  33. 33.

    & Clim. Dynam. 5, 103–110 (1990).

  34. 34.

    & Nature 324, 137–140 (1986).

  35. 35.

    Clim. Dynam. 4, 219–235 (1990).

  36. 36.

    , & J. geophys. Res. 94, 12851–12871 (1989).

  37. 37.

    , , & Quat. Res. 13, 33–64 (1980).

  38. 38.

    Clim. Dynam. 6, 67–81 (1991).

  39. 39.

    & Norsk Geol. Tidssk. 71, 149–151 (1991).

  40. 40.

    & Geol. Soc. Am. Bull. 93, 1273–1279 (1982).

  41. 41.

    Ice Age Earth: Late Quaternary Geology and Climate, 180–198 (Routledge, London, 1991).

  42. 42.

    et al. Earth planet. Sci. Lett. 98, 166–174 (1990).

  43. 43.

    et al. IAVCEI Progr. Abstr., Gen. Assembly, Vienna, IUGG 20, 6 (1991).

  44. 44.

    , & J. Quat. Sci. 6, 159–173 (1991).

  45. 45.

    et al. Nature 338, 309–313 (1989).

  46. 46.

    , , & Earth planet. Sci. Lett. 103, 301–310 (1991).

  47. 47.

    et al. Nature 276, 574–577 (1978).

  48. 48.

    Quat. Res. 9, 139–167 (1978).

Download references

Author information

Affiliations

  1. Earth Systems Group, Applied Science Department, New York University, New York, New York 10003, USA

    • Michael R. Rampino
  2. NASA, Goddard Institute for Space Studies, New York, New York 10025, USA

    • Michael R. Rampino
  3. Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

    • Stephen Self

Authors

  1. Search for Michael R. Rampino in:

  2. Search for Stephen Self in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/359050a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.