Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for single-temperature dust in the Crab nebula from a reanalysis of its infrared spectrum

Abstract

THE Crab nebula, the remnant of the celebrated supernova of 1054 (refs 1, 2), lies 2 kpc from the Earth3,4 and is the most powerful neutron-star-driven nebulosity known. Its emission from radio to X-ray wavelengths is predominantly synchrotron radiation, with a power-law spectrum that steepens abruptly at 1013 and 1016 Hz (ref. 4). The infrared satellite observatory IRAS revealed significant excess emission, above the synchrotron spectrum, peaking between 60 and 100 μm in wavelength5. This was attributed to thermal radiation by dust with at least two characteristic temperatures in the range 40–100 K (refs 5,6). We have now reanalysed the IRAS data, taking care to remove contamination by background emission, and find that the revised infrared flux densities are in fact well explained by a single dust component at a temperature of 46 K. The required dust mass is 0.02 solar masses (M), corresponding to a gas to dust ratio of 100:1. We also determine more accurately the break frequency, 1.4 × 1013 Hz, in the power-law spectrum. This value implies, for a steady-state synchrotron model, a time-averaged magnetic field of 420 μ,G, which is less than the value corresponding to an equipartition of energy between radiating particles and magnetic field, but probably greater than the present field strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lundmark, K. E. Publ. astr. Soc. Pac. 33, 225–238 (1921).

    Article  ADS  Google Scholar 

  2. Duyvendak, J. J. L. & Oort, J. H. T'Oung Pao 36, 174–180 (1942).

    Google Scholar 

  3. Clark, D. H. et al. Mon. Not. R. astr. Soc. 204, 415–431 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Woltjer, L. in Proc. High Energy Phenomena around Collapsed Stars (ed. Pacini, F.) 209–221 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  5. Marsden, P. L. et al. Astrophys. J. 278, L29–L32 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Mezger, P. G., Tuffs, R. J., Chini, R., Kreysa, E. & Gemünd, H.-P. Astr. Astrophys. 167, 145–150 (1986).

    ADS  CAS  Google Scholar 

  7. Beichman, C. A., Neugebauer, G., Habing, H. J., Clegg, P. E. & Chester, T. J. (eds) IRAS Catalog and Atlases, Explanatory Supplement (GPO, Washington, 1985).

  8. Greidanus, H. & Strom, R. G. Astr. Astrophys. 240, 385–399 (1990).

    ADS  CAS  Google Scholar 

  9. Arendt, R. G. Astrophys. J. Suppl. 70, 181–212 (1989).

    Article  ADS  Google Scholar 

  10. Wright, E. L., harper, D. A., Hildebrand, R. H., Keene, J. & Whitcomb, S. E. Nature 279, 703–705 (1979).

    Article  ADS  Google Scholar 

  11. Pacholczyk, A. G. Radio Astrophys (Freeman, San Francisco, 1970).

    Google Scholar 

  12. Chini, R., Kreysa, E., Mezger, P. G. & Gemünd, H.-P. Astr. Astrophys. 137, 117–127 (1984).

    ADS  CAS  Google Scholar 

  13. Draine, B. T. & Lee, H. M. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Davidson, K. & Fesen, R. A. A. Rev. Astr. Astrophys. 23, 119–146 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Woltjer, L. & Véron-Cetty, M.-P. Astr. Astrophys. 172, L7–L8 (1987).

    ADS  CAS  Google Scholar 

  16. Fesen, R. A. & Blair, W. P. Astrophys. J. 351, L45–L48 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Hester, J. J., Graham, J. R., Beichman, C. A. & Gautier, T. N. III Astrophys. J. 357, 539–547 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Vacanti, G. et al. Astrophys. J. 377, 467–479 (1991).

    Article  ADS  Google Scholar 

  19. Trimble, V. & Rees, M. Astrophys. Lett. 5, 93–97 (1970).

    ADS  Google Scholar 

  20. Pacini, F. & Salvati, M. Astrophys. J. 186, 249–265 (1973).

    Article  ADS  Google Scholar 

  21. Reynolds, S. P. & Chevalier, R. A. Astrophys. J. 278, 630–648 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Kennel, C. F. & Coroniti, F. V. Astrophys. J. 283, 694–709 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strom, R., Greidanus, H. Evidence for single-temperature dust in the Crab nebula from a reanalysis of its infrared spectrum. Nature 358, 654–655 (1992). https://doi.org/10.1038/358654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358654a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing