Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Action spectrum for DMA damage in alfalfa lowers predicted impact of ozone depletion

Abstract

DEPLETION of stratospheric ozone will increase the intensity of solar mid-ultraviolet (280–320 nm) radiation reaching the biosphere1. Predictions of increases in biologically effective ultraviolet radiation require knowledge of both the solar spectral intensity and the wavelength-dependent sensitivity (action spectrum) for damaging the biological target2. A generalized action spectrum for plant damage encompassing wavelengths from 280 to 313 nm3–5 has been widely used to predict the consequences of ozone depletion. Calculations6 based on this spectrum and new satellite measurements of atmospheric ozone suggest that plants will be among those organisms most severely affected. Here we report an absolute action spectrum for cyclobutyl pyrimidine dimer induction in DNA in intact alfalfa seedlings, which reveals damage by wavelengths as long as 365 nm. Calculations based on this new action spectrum predict significantly smaller increases in biologically effective ultraviolet radiation resulting from ozone depletion, particularly at high latitudes, than calculations based on either the generalized plant action spectrum or the action spectrum for damaging unshielded DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jagger, J. Solar-UV Actions on Living Cells (Praeger, New York, 1985).

    Google Scholar 

  2. Setlow, R. B. Proc. natn. Acad. Sci. U.S.A. 71, 3363–3366 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Caldwell, M. M. Ecol. Monogr. 38, 243–268 (1968).

    Article  Google Scholar 

  4. Caldwell, M. M. in Photophysiology (ed. Giese, A. C.) 6, 131–177 (Academic, New York, 1971).

    Book  Google Scholar 

  5. Caldwell, M. M., Camp, L. B., Warner, C. W. & Flint, S. D. in Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life (eds Worrest, R. C. & Caldwell, M. M.) 87–111 (Springer, Berlin, 1986).

    Book  Google Scholar 

  6. Madronich, S. Geophys. Res. Lett. 19, 37–40 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Sutherland, B. M., Harber, L. C. & Kochevar, I. E. Cancer Res. 40, 3181–3185 (1980).

    CAS  PubMed  Google Scholar 

  8. Freeman, S. E. et al. Analyt. Biochem. 158, 119–129 (1986).

    Article  CAS  Google Scholar 

  9. Quaite, F. E., Sutherland, B. M. & Sutherland, J. C. Appl. theor. Electroph. 2, 171–175 (1992).

    CAS  Google Scholar 

  10. Coohill, T. P. in Topics in Photomedicine (ed. Smith, K. C.) 1–37 (Plenum, New York).

  11. Caldwell, M. M., Robberrecht, R. & Flint, S. D. Physiol. Plant. 58, 445–450 (1983).

    Article  CAS  Google Scholar 

  12. Freeman, S. E. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5605–5609 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Emrick, A. & Sutherland, J. C. Photochem. Photobiol. 49, 35S (1989).

    Google Scholar 

  14. Tevini, M., Braun, J. & Fieser, G. Photochem. Photobiol. 53, 329–333 (1991).

    Article  CAS  Google Scholar 

  15. Johns, H. E. & Rauth, M. Photochem. Photobiol. 4, 673–692 (1965).

    Article  CAS  Google Scholar 

  16. Carrier, W. L. & Setlow, R. B. J. Bact. 102, 178–186 (1970).

    CAS  PubMed  Google Scholar 

  17. Sutherland, J. C. et al. Analyt. Biochem. 163, 446–457 (1987).

    Article  CAS  Google Scholar 

  18. Shettle, E. P., Nack, M. L. & Green, A. E. S. in Impacts of Climatic Change on the Biosphere 1: Ultraviolet Radiation Effects (eds Nachtwey, D. S., Caldwell, M. M. & Biggs, R. H. ) 2.38–2.49 (National Technical Information Service, Springfield, VA, 1975).

    Google Scholar 

  19. Helbling, E. W., Villafane, V., Ferrario, M. & Holm-Hansen, O. Mar. Ecol. Prog. Ser. 80, 89–100 (1992).

    Article  ADS  Google Scholar 

  20. Lubin, D. et al. J. geophys. Res. 97, 7817–7828 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Ryan, K. G. J. Photochem. Photobiol. 13, 235–240 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaite, F., Sutherland, B. & Sutherland, J. Action spectrum for DMA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358, 576–578 (1992). https://doi.org/10.1038/358576a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358576a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing