Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An earthquake mechanism based on rapid sealing of faults

Abstract

RECENT seismological, heat flow and stress measurements in active fault zones such as the San Andreas have led to the suggestion1,2 that such zones can be relatively weak. One explanation for this may be the presence of overpressured fluids along the fault3–5, which would reduce the shear stress required for sliding by partially 'floating' the rock. Although several mechanisms have been proposed for overpressurizing fault fluids3,4,6,7, we recall that 'pressure seals' are known to form in both sedimentary8 and igneous9 rocks by the redistribution of materials in solution; the formation of such a seal along the boundaries of a fault will prevent the communication of fluids between the porous, deforming fault zone and the surrounding country rock. Compaction of fault gouge, under hydrostatic loading and/or during shear, elevates pore pressure in the sealed fault and allows sliding at low shear stress. We report the results of laboratory sliding experiments on granite, which demonstrate that the sliding resistance of faults can be significantly decreased by sealing and compaction. The weakening that results from shear-induced compaction can be rapid, and may provide an instability mechanism for earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zoback, M. D. et al. Science 238, 1105–1111 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Hickman, S. H. in US. Nat. Rep. int. Un. Geodesy Geophys. 1987–1990, Rev. Geophys. Suppl., 759–775 (1991).

  3. Lachenbruch, A. H. J. geophys. Res. 85, 6097–6112 (1980).

    Article  ADS  Google Scholar 

  4. Byerlee, J. Geophys. Res. Lett. 17, 2109–2112 (1990).

    Article  ADS  Google Scholar 

  5. Rice, J. R. in Fault Mechanics and Transport Properties in Rocks (the Brace volume) (ed. Evans, B. & Wong, T.-F.) 475–503 (Academic, London, 1992).

    Book  Google Scholar 

  6. Sibson, R. H. Nature 243, 66–68 (1973).

    ADS  Google Scholar 

  7. Fournier, R. O. EOS 71, 1635 (1990).

    Google Scholar 

  8. Powley, D. E. Earth Sci. Rev. 29, 215–226 (1990).

    Article  ADS  Google Scholar 

  9. Fournier, R. O. Geophys. Res. Lett. 18, 955–958 (1991).

    Article  ADS  Google Scholar 

  10. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Geophys. Res. Lett. 18, 609–612 (1991).

    Article  ADS  Google Scholar 

  11. Morrow, C. A., Moore, D. E. & Byerlee, J. D. Mat. Res. Soc. Proc. 44, 467–473 (1985).

    Article  CAS  Google Scholar 

  12. Summers, R., Winkler, K. & Byerlee, J. J. geophys. Res. 83, 339–344 (1978).

    Article  ADS  Google Scholar 

  13. Smith, D. L. & Evans, B. J. geophys. Res. 89, 4125–4135 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Sprunt, E. S. & Nur, A. Geophysics 42, 726–741 (1977).

    Article  ADS  Google Scholar 

  15. Cox, S. F. & Paterson, M. S. Geophys. Res. Lett. 18, 1401–1404 (1991).

    Article  ADS  Google Scholar 

  16. Lockner, D. A. thesis, Massachusetts Inst. Technol. (1990).

  17. Marone, C. & Scholz, C. H. Geophys. Res. Lett. 15, 621–624 (1988).

    Article  ADS  Google Scholar 

  18. Morrow, C. A. & Byerlee, J. D. J. struct. Geol. 11, 815–825 (1989).

    Article  ADS  Google Scholar 

  19. Angevine, C. L., Turcotte, D. L. & Furnish, M. D. Tectonics 1, 151–160 (1982).

    Article  ADS  Google Scholar 

  20. Fredrich, J. T. & Evans, B. EOS 72 (Fall mtg. Suppl.) 441 (1992).

    Google Scholar 

  21. Burnham, C. W., Holloway, J. R. & Davis, N. F. Thermodynamic Properties of Water to 1,000 °C and 10,000 Bars (Geol. Soc. Am., Boulder, Colorado, 1969).

    Google Scholar 

  22. Brace, W. F., Walsh, J. B. & Frangos, W. T. J. geophys. Res. 73, 2225–2236 (1968).

    Article  ADS  Google Scholar 

  23. Brantley, S. L., Evans, B., Hickman, S. H. & Crerar, D. A. Geology 18, 136–139 (1990).

    Article  ADS  Google Scholar 

  24. Walder, J. & Nur, A. J. geophys. Res. 89, 11539–11548 (1984).

    Article  ADS  Google Scholar 

  25. Hunt, J. M. Am. Assoc. Petrol. Geol. Bull. 74, 1–12 (1990).

    Google Scholar 

  26. Ramsey, J. G. Nature 284, 135–139 (1980).

    Article  ADS  Google Scholar 

  27. Sibson, R. H., Robert, F. & Poulsen, K. H. Geology 16, 701–704 (1988).

    Article  Google Scholar 

  28. Behrmann, J. H. Earth planet. Sci. Lett. 107, 550–558 (1991).

    Article  ADS  Google Scholar 

  29. Walsh, J. B. J. geophys. Res. 76, 8597–8598 (1971).

    Article  ADS  Google Scholar 

  30. Chester, F. M. & Logan, J. M. Pure appl. Geophys. 124, 79–106 (1986).

    Article  ADS  Google Scholar 

  31. Power, W. L. & Tullis, T. E. J. struct. Geol. 11, 879–893 (1991).

    Article  ADS  Google Scholar 

  32. Frohlich, C. A. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  33. Wannamaker, P. E., et al. J. geophys. Res. 94, 14127–14144 (1989).

    Article  ADS  Google Scholar 

  34. Meade, C. & Jeanloz, R. Science 252, 68–72 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  36. Burnley, P. C., Green, H. W. & Prior, D. J. J. geophys. Res. 96, 425–443 (1991).

    Article  ADS  Google Scholar 

  37. Lockner, D. A., Summers, R. & Byerlee, J. D. Pure appl. Geophys. 124, 445–469 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanpied, M., Lockner, D. & Byerlee, J. An earthquake mechanism based on rapid sealing of faults. Nature 358, 574–576 (1992). https://doi.org/10.1038/358574a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358574a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing