Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deformed autoregulatory element from Drosophila functions in a conserved manner in transgenic mice

Abstract

THE striking similarities in the structure, organization and anterior–posterior expression patterns between the marine Hox gene system and the Drosophila homeotic gene complexes1,2, called HOM-C (ref. 3), may point to highly conserved mechanisms for specifying positional identities (reviewed in ref. 4). Strong support for this concept lies in the observation of conserved colinearity between the genomic order of the Hox/HOM genes and their unique successive expression domains along the anterior-posterior axes of both mouse and fly embryos1,2. These unique and precise expression patterns appear to be facilitated by multiple cis-regulatory elements (reviewed in ref. 5). One of the few elements characterized in detail is the autoregulatory enhancer of the homeotic gene Deformed (Dfd)6–9, which supports expression in subregions of posterior head segments of Drosophila embryos7. Here we present evidence that this enhancer is capable of conferring reporter gene expression to a discrete subregion of the hindbrain in transgenic mouse embryos. Remarkably, this anterior-posterior subregion lies within the common anterior expression domain of the Dfd cognate Hox genes in the postotic hindbrain10,11. Our results indicate that the Dfd autoregulatory enhancer is part of a highly conserved mechanism for establishing region-specific gene expression along the anterior–posterior axis of the embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graham, A., Papalopulu, N. & Krumlauf, R. Cell 57, 367–378 (1989).

    Article  CAS  Google Scholar 

  2. Duboule, D. & Dollé, P. EMBO J. 8, 1497–1505 (1989).

    Article  CAS  Google Scholar 

  3. Akam, M. Cell 57, 347–349 (1989).

    Article  CAS  Google Scholar 

  4. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  5. Dessain, S. & McGinnis, W. Curr. Opin. Genet. Dev. 1, 275–282 (1991).

    Article  CAS  Google Scholar 

  6. Regulski, M., McGinnis, N., Chadwick, R. & McGinnis, W. EMBO J. 6, 767–777 (1987).

    Article  CAS  Google Scholar 

  7. Bergson, C. & McGinnis, W. EMBO J. 9, 4287–4297 (1990).

    Article  CAS  Google Scholar 

  8. McGinnis, W. et al. Adv. Genet. 27, 363–402 (1990).

    Article  CAS  Google Scholar 

  9. Regulski, M., Dessain, S., McGinnis, N. & McGinnis, W. Genes Dev. 5, 278–286 (1991).

    Article  CAS  Google Scholar 

  10. Gaunt, S. J., Krumlauf, R. & Duboule, D. Development 107, 131–141 (1989).

    CAS  PubMed  Google Scholar 

  11. Hunt, P. et al. Nature 353, 861–864 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Awgulewitsch, A., Bieberich, C., Bogarad, L., Shashikant, C. & Ruddle, F. H. Proc. natn. Acad. Sci. U.S.A. 87, 6428–6432 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Zakany, J., Tuggle, C. K., Patel, M. D. & Nguyen-Huu, M. C. Neuron 1, 679–691 (1988).

    Article  CAS  Google Scholar 

  14. Whiting, J. et al. Genes Dev. 5, 2048–2059 (1991).

    Article  CAS  Google Scholar 

  15. Rugh, R. The Mouse: Its Reproduction and Development (Oxford University Press, New York, 1990).

    Google Scholar 

  16. Lumsden, A. & Keynes, R. Nature 337, 424–428 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Lumsden, A. Trends Neurosci. 13, 329–335 (1990).

    Article  CAS  Google Scholar 

  18. Graham, A., Maden, M. & Krumlauf, R. Development 112, 255–264 (1991).

    CAS  Google Scholar 

  19. Keynes, R. & Lumsden, A. Neuron 2, 1–9 (1990).

    Article  Google Scholar 

  20. Wolgemuth, D. et al. EMBO J. 5, 1229–1235 (1986).

    Article  CAS  Google Scholar 

  21. Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E. & Krumlauf, R. Nature 341, 405–409 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Akam, M., Dawson, I. & Tear, G. Development 104, suppl. 123–133 (1988).

    Google Scholar 

  23. Tuggle, C. K., Zakany, J., Cianetti, L., Peschle, C. & Nguyen-Huu, M. C. Genes Dev. 4, 180–189 (1990).

    Article  CAS  Google Scholar 

  24. Malicki, J., Cianetti, L., Peschle, C. & McGinnis, W. Nature 358, 345–347 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Falb, D. & Maniatis, T. Genes Dev. 6, 454–465 (1992).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Bieberich, C. J., Utset, M. F., Awgulewitsch, A. & Ruddle, F. H. Proc. natn. Acad. Sci. U.S.A. 87, 8462–8466 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1982).

    Google Scholar 

  29. Gordon, J. & Ruddle, F. Meth. Enzym. 101, 411–433 (1983).

    Article  CAS  Google Scholar 

  30. Hogan, B., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1986).

    Google Scholar 

  31. Awgulewitsch, A. & Utset, M. in Methods in Nucleic Acids Research (eds Chao, L., Karam, J. & Warr, G.) 359–375 (CRC, Boca Raton, 1991).

    Google Scholar 

  32. Wolgemuth, D. J. et al. Proc. natn. Acad. Sci. U.S.A. 84, 5813–5817 (1987).

    Article  ADS  CAS  Google Scholar 

  33. Awgulewitsch, A. & Jacobs, D. Development 108, 411–420 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awgulewitsch, A., Jacobs, D. Deformed autoregulatory element from Drosophila functions in a conserved manner in transgenic mice. Nature 358, 341–344 (1992). https://doi.org/10.1038/358341a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358341a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing