Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG

Abstract

TYPE III receptors for IgG (FcγRII; ref. 1), high-affinity IgE receptors (FcɛRI; ref. 2), as well as the T- and B-cell antigen receptors3,4, consist of multiple components with specialized ligand-binding and signal transduction functions5–10. FcγRII α (ligand-binding) and γ (signal-transducing) subunits are expressed in macrophages1, a cell type involved in the uptake of antigen, its processing and the presentation of the resulting peptides to major histocompatibility complex class II-restricted T lymphocytes11,12. Here we show that murine FcγRIII, transfected into FcγR-negative antigen-presenting B-lymphoma cells, mediate rapid ligand internalization and strongly increase the efficiency of antigen presentation when antigen is complexed to IgG. Efficient internalization and antigen presentation via FcγRIII did not require the cytoplasmic domain of the ligand-binding α-chain, but did require the γ-subunit. Using chimaeric molecules, we show that γ-chain contains a signal for receptor internalization and that the mutation of either of the two ryrosine residues present in its cytoplasmic domain prevents efficient internalization and antigen presentation of immune complexes. Thus, associated chains and their tyrosine-containing motif are not exclusively involved in cell activation, but also determine multimeric receptor internalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ravetch, J. V. & Kinet, J-P. A. Rev. Immun. 9, 457–492 (1986).

    Article  Google Scholar 

  2. Metzger, H. et al. Rev. Immun. 4, 419–470 (1986).

    Article  CAS  Google Scholar 

  3. Klausner, R. D., Lippincott-Schwartz, J. & Bonifacino, J. S. A. Rev. Cell Biol. 6, 403–431 (1990).

    Article  CAS  Google Scholar 

  4. Venkitaraman, A. R., Williamsm, G. T., Dariavach, P. & Neuberger, M. S. Nature 352, 777–781 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Klausner, R. D. & Samelson, L. E. Cell 64, 875–878 (1991).

    Article  CAS  Google Scholar 

  6. Irving, B. A. & Weiss, A. Cell 64, 891–901 (1990).

    Article  Google Scholar 

  7. Nomura, J., Matsuo, T., Kubota, E., Kimoto, M. & Sakaguchi, N. Int. Immun. 3, 117–126 (1991).

    Article  CAS  Google Scholar 

  8. Wegner, K. et al. Cell 68, 83–95 (1992).

    Article  Google Scholar 

  9. Letourneur, F. & Klausner, R. D. Science 255, 79–81 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Bonnerot, C. et al. EMBO J. 11, 2747–2758 (1992).

    Article  CAS  Google Scholar 

  11. Unanue, E. R. A. Rev. Immun. 2, 395–428 (1984).

    Article  CAS  Google Scholar 

  12. Lanzavecchia, A. A. Rev. Immun. 8, 773–793 (1990).

    Article  CAS  Google Scholar 

  13. Jones, B., Tite, J. P. & Janeway, C. A. Jr J. Immun. 136, 348–356 (1986).

    CAS  PubMed  Google Scholar 

  14. Trowbridge, I. S. Curr. Opin. Cell Biol. 3, 634–641 (1991).

    Article  CAS  Google Scholar 

  15. Ksitakis, N. T., Thomas, D'N. & Roth, M. G. J. Cell Biol. 111, 1393–1407 (1990).

    Article  Google Scholar 

  16. Unkeless, J. C. J. exp. Med. 150, 580–596 (1979).

    Article  CAS  Google Scholar 

  17. Amigorena, S. et al. Science 256, 1808–1812 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Justement, L. B., Kreiger, J. & Cambier, J. C. J. Immun. 143, 881–889 (1989).

    CAS  PubMed  Google Scholar 

  19. Drake, J. R., Repasky, E. A. & Bankert, R. B. J. Immun. 143, 1768–1784 (1989).

    CAS  PubMed  Google Scholar 

  20. Iserky, C., Rivera, J., Segal, D. M. & Triche, T. J. Immun. 131, 388–396 (1983).

    Google Scholar 

  21. Chu, G., Hayakawa, H. & Berg, P. Nucleic Acids Res. 15, 1311–1326 (1987).

    Article  CAS  Google Scholar 

  22. Salamero, J., Humbert, M. Cosson, P. & Davoust, J. EMBO J. 9, 3489–3496 (1990).

    Article  CAS  Google Scholar 

  23. Breyer, R. M. & Sauer, R. T. J. biol. Chem. 264, 13348–13353 (1989).

    CAS  PubMed  Google Scholar 

  24. Lai, M.-Z. et al. J. Immun. 139, 3973–3979 (1987).

    CAS  PubMed  Google Scholar 

  25. Fracker, P. J. & Spreck, J. C. Biochem. biophys. Res. Commun. 80, 849–857 (1978).

    Article  Google Scholar 

  26. Haigler, H. T., Maxfield, F. R., Mark, C. W. & Pastan, I. J. biol. Chem. 4, 1239–1241 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amigorena, S., Salamero, J., Davoust, J. et al. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature 358, 337–341 (1992). https://doi.org/10.1038/358337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing