Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability of high-density clinoenstatite at upper-mantle pressures

Abstract

SILICATE pyroxenes are major components in mineralogies! models of the Earth's upper mantle1,2, with the transformation of chain-silicate pyroxenes to denser garnet structures being a possible cause3 of the seismic discontinuity at 400 km depth that divides the upper mantle from the transition zone. At shallower depths assemblages containing two pyroxenes are stable: calcium and sodium components are accommodated in a diopside–jadeite solid solution3, while magnesium and iron form a second, calcium-poor pyroxene. In the absence of experimental data, orthoenstatite was long believed to be the stable polymorph of (Mg, Fe)-pyroxene over the entire upper mantle. More recently, however, petrological experiments4,5 at pressures and temperatures in excess of 8 GPa and 900 °C have provided evidence for the transformation of Mg-orthopyroxene to a clinopyroxene phase. The thermodynamic and physical properties of this phase are completely unknown. Here we report the results of a high-pressure single-crystal diffraction study which confirm the stability of a high-clinopyroxene phase of MgSiO3 at high pressures, and allow an initial estimate to be made of the density changes associated with the transformation of the orthopyroxene component in the Earth's upper mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ringwood, A. E. Composition and Petrology of the Earth's Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  2. Anderson, D. L. Theory of the Earth (Blackwell, Boston, 1989).

    Google Scholar 

  3. Gasparik, T. Contrib. Miner. Petrol. 102, 389–405 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Pacalo, R. E. G. & Gasparik, T. J. geophys. Res. B95, 15853–15858 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Kanzaki, M. Phys. Chem. Miner. 17, 726–730 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Grover, J. EOS 53, 539 (1972).

    Google Scholar 

  7. Ohasrhi, Y. Phys. Chem. Miner. 10, 217–229 (1984).

    Article  ADS  Google Scholar 

  8. Mao, H-K., Xu, J. & Bell, P. M. J. geophys. Res. 91, 4673–4676 (1986).

    Article  ADS  CAS  Google Scholar 

  9. King, H. E. & Finger, L. W. J. appl. Crystallogr. 12, 374–378 (1979).

    Article  CAS  Google Scholar 

  10. Matsui, M. & Price, G. D. Phys. Chem. Miner. 18, 365–372 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Thompson, J. B. Am. Miner. 55, 292–293 (1970).

    Google Scholar 

  12. Chopelas, A. & Boehler, R. in High Pressures in Mineral Physics (eds Manghnani, M. & Syono, Y.) (Terra Scientific & American Geophysical Union, Washington DC 1992).

    Google Scholar 

  13. Ross, N. L. & Navrotsky, A. Am. Miner. 73, 1355–1365 (1988).

    CAS  Google Scholar 

  14. Holland, T. J. B., Navrotsky, A. & Newton, R. C. Contrib. Miner. Petrol. 69, 337–344 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Fei, Y., Saxena, S. K. & Navrotsky, A. J. geophys. Res. B95, 6915–6928 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Revenaugh, J. & Jordan, T. H. J. geophys. Res. B96, 19781–19810 (1991).

    Article  ADS  Google Scholar 

  17. Shearer, P. M. J. geophys. Res. B96, 18147–18182 (1991).

    Article  ADS  Google Scholar 

  18. Oziewonski, A. M. & Anderson, D. L. Phys. Earth. planet. Int. 25, 297–356.

  19. Akimoto, S., Katsura, T., Syono, Y., Fujisawa, H. & Komada, E. J. geophys. Res. 70, 5269–5278 (1965).

    Article  ADS  CAS  Google Scholar 

  20. Herzberg, C. & Gasparik, T. J. geophys. Res. B96, 16263–16274 (1991).

    Article  ADS  Google Scholar 

  21. Finger, L. W. & Prince, E. Natn. Bur. Stand. Tech. Note 854 (1974).

  22. International Tables for X-ray Crystallography, Vol. 4 (Kynoch, Birmingham, 1974).

  23. Robinson, K., Gibbs, G. V. & Ribbe, P. H. Science 172, 567–570 (1971).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angel, R., Chopelas, A. & Ross, N. Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358, 322–324 (1992). https://doi.org/10.1038/358322a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358322a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing