Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary


CHANGES in the isotope content of the large marine carbon reservoir can force shifts in that of the smaller carbon pools in the atmosphere and on land. The carbon isotope compositions of marine carbonate sediments from the late Palaeocene vary considerably, exhibiting a sudden decrease close to the Palaeocene/Eocene boundary which coincides with deep-sea benthic extinctions1 and with changes in ocean circulation. Here we report that these fluctuations in the marine carbon isotope record are closely tracked by the terrestrial records provided by palaeosol carbonates and mammalian tooth enamel. In using palaeosol carbonates to reconstruct the CO2 content of the ancient atmosphere2, isotope shifts of this sort will have to be taken into account. The sharp decrease in 13C/12C ratios in the late Palaeocene provides a datum for precise correlation of marine and continental records, and suggests that abrupt climate warming at this time may have played an important role in the evolution of land mammals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Kennett, J. P. & Stott, L. D. Nature 353, 225–229 (1991).

    ADS  Article  Google Scholar 

  2. 2

    Cerling, T. E. Am. J. Sci. 291, 377–400 (1991).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Aubry, M.-P. et al. Paleoceanography 3, 707–742 (1988).

    ADS  Article  Google Scholar 

  4. 4

    Shackleton, N. J., Palaeogeogr. Palaeoclim. Palaeoecol. 57, 91–102 (1986).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Tjalsma, R. C. & Lohmann, G. P. Micropaleont. spec. Publ. 4 (Micropaleontology Press, New York, 1983).

    Google Scholar 

  6. 6

    Thomas, E. Proc. Ocean Drilling Prog. B 113, 571–594 (1990).

    Google Scholar 

  7. 7

    Pak, D. K., Miller, K. G. & Wright, J. D. Geol. Soc. Am. Abstr. A 141 (1991).

  8. 8

    Thomas, E. Geol. Soc. Am. Abstr. 23(5), A141 (1991).

    Google Scholar 

  9. 9

    Barrera, E. Geol. Soc. Am. Abstr. 23(5), A179 (1991).

    Google Scholar 

  10. 10

    Sundquist, E. T. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broeker, W. S.) 5–59 (American Geophysical Union, 1985).

    Google Scholar 

  11. 11

    Thackeray, J. F. et al. Nature 347, 751–753 (1990).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Mook, W. G. Neth. J. Sea Res. 20, 211–223 (1986).

    CAS  Article  Google Scholar 

  13. 13

    Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. Am. J. Sci. 289, 436–454 (1989).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Raven, J. A. & Sprent, J. I. J. geol. Soc. Lond. 146, 161–170 (1989).

    Article  Google Scholar 

  15. 15

    O'Leary, M. H., Bioscience 38, 328–336 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. J. archaeol. Sci. 16, 585–599 (1989).

    Article  Google Scholar 

  17. 17

    Quade, J. A., Cerling, T. E. & Bowman, J. R. Geol. Soc. Am. Bull. 101, 464–475 (1989).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Cerling, T. E., Solomon, D. K., Quade, J. & Bowman, J. R. Geochim. cosmochim. Acta 55, 3403–3405 (1991).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Cerling, T. E., Quade, J. A., Wang, Y. & Bowman, J. R. Nature 341, 138–139 (1989).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Mora, C. I., Driese, S. G. & Seager, P. G. Geology 19, 1017–1020 (1991).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Butler, R. F., Gingerich, P. D. & Lindsay, E. H. J. Geol. 89, 299–316 (1981).

    ADS  Article  Google Scholar 

  22. 22

    Gingerich, P. D. Univ. Mich. Papers Paleontrol. 28, 1–97 (1989).

    Google Scholar 

  23. 23

    Lee-Thorp, J. A. & van der Merwe, N. J. J. archaeol. Sci. 19, 343–354 (1991).

    Article  Google Scholar 

  24. 24

    Lee-Thorp, J. A. & van der Merwe, N. J. S. Afr. J. Sci. 83, 71–74 (1987).

    Google Scholar 

  25. 25

    Bown, T. M. & Kraus, M. J. Palaeogeogr. Palaeoclim. Palaeoecol. 34, 1–30 (1981).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Wing, S. L. Science 226, 439–441 (1984).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Wing, S. L., Bown, T. M. & Obradovich, J. D. Geology 19, 1189–1192 (1991).

    ADS  Article  Google Scholar 

  28. 28

    Wright, V. P. & Vanstone, S. D. J. geol. Soc. Lond. 148, 945–947 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Berner, R. A. Am. J. Sci. 291, 339–376 (1989).

    ADS  Article  Google Scholar 

  30. 30

    Stott, L. D., Kennett, J. P., Shackleton, N. J. & Corfield, R. M. Proc. ODP Scient. Results 113 (eds Barker, P. F. et al.) 849–863 (Ocean Drilling Program, College Station, Texas, 1990).

    Google Scholar 

  31. 31

    Shackleton, N. J., Hall, M. A. & Boersma, A. Init. Rep. DSDP 74 (eds Moore, T. C. et al.) 599–612 (U.S. Government Printing Office, Washington DC, 1984).

    Google Scholar 

  32. 32

    Corfield, R. M., Cartlidge, J. E. & Shackleton, N. J. Paleoceanography (submitted).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koch, P., Zachos, J. & Gingerich, P. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing