Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linear free energy relations for predicting dissolution rates of solids

Abstract

A QUANTITATIVE understanding of the rates and mechanisms of dissolution of crystalline solids in aqueous solutions is critical to the chemical modelling of many geochemical, environmental and industrial processes. Here I show that a linear free energy equation, developed recently1,2 for the prediction of the standard Gibbs free energies of formation of isostructural families of crystalline solids, can also be used for predicting the dissolution rates of solids. This equation bears a close analogy with the Hammett equation for aqueous organics3. Regression of data for the surface-reaction-controlled dissolution rates of isostructural families of divalent metal oxides and orthosilicates using the new equation yields coefficients characteristic of the specific crystal structure, whichturn out to be very close to the coefficients obtained by regression of standard free energy data for the same families. These results suggest that standard free energy coefficients can be used to predict dissolution rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sverjensky, D. A. & Molling, P. A. Nature 355, 231–234 (1992).

    Article  ADS  Google Scholar 

  2. Sverjensky, D. A. Geol. Soc. Am. A. Meeting Abstr. 23, A212 (1991).

    Google Scholar 

  3. Wells, P. R. Linear Free Energy Relationships (Academic, London, 1968).

    Google Scholar 

  4. Exner, O. Correlation Analysis of Chemical Data (Plenum, New York, 1988).

    Google Scholar 

  5. Brezonik, P. L. in Aquatic Chemical Kinetics (ed. Stumm, W.) 113–143 (Wiley, New York, 1990).

    Google Scholar 

  6. Hammett, D. J. Am. chem. Soc. 59, 96–103 (1937).

    Article  CAS  Google Scholar 

  7. Casey, W. H. & Westrich, H. R. Nature 355, 157–159 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Casey, W. H. J. Colloid. Interf. Sci. 146, 586–589 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Murphy, W. M. & Helgeson, H. C. Geochim. cosmochim. Acta. 51, 3137–3153 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Murphy, W. M. & Helgeson, H. C. Am. J. Sci. 289, 17–101 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Lasaga, A. C. in Kinetics of Geochemical Processes (eds Lasaga, A. C. & Kirkpatrick, R. J.) 261–319 (Mineralogical Society of America, Washington DC, 1981).

    Google Scholar 

  12. Stumm, W. & Wieland, E. in Aquatic Chemical Kinetics (ed. Stumm, W.) 367–400 (Wiley, New York, 1990).

    Google Scholar 

  13. Wieland, E., Wehrli, B. & Stumm, W. Geochim. cosmochim. Acta 52, 1969–1982 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Blum, A. E. & Lasaga, A. C. Geochim. cosmochim. Acta 55, 2193–2201 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Glushko, V. P. Thermal Constants of Substances (Viniti, Moscow, 1965–1981).

    Google Scholar 

  16. Berman, R. G. J. Petrol. 29, 445–522 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Robinson, G. R. et al. U.S. Dept. Int. Geol. Surv. Open File Rep. 83–72 (1982).

  18. Robie, R. A., Hemingway, B. S. & Takei, H. Am. Mineral. 67, 470–482 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sverjensky, D. Linear free energy relations for predicting dissolution rates of solids. Nature 358, 310–313 (1992). https://doi.org/10.1038/358310a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358310a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing