Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling the hydrological cycle in assessments of climate change

Abstract

Climate change caused by increasing atmospheric concentrations of greenhouse gases may have important effects on water circulation and availability and thus on agriculture, forestry and river flow, with significant economic consequences. A variety of models are being used to evaluate hydrological effects, but their hydrological responses to global warming are often inconsistent. Improved understanding of basic hydrological processes is needed if we are to assess the impact of future climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change Working Group I Climate Change, the IPCC Scientific Assessment (Cambridge Univ. Press, Cambridge, 1990).

  2. Intergovernmental Panel on Climate Change Working Group II Climate Change, the IPCC Impacts Assessment (Australian Government Publishing Service, Canberra, 1990).

  3. Smith, J. B. & Tirpak, D. EPA-230-05-89-050 (U.S. Environmental Protection Agency, Washington DC, 1989).

  4. Rind, D. et al. J. geophys. Res. 95, 9983–10004 (1990).

    Article  ADS  Google Scholar 

  5. Hansen, J. et al. Mon. Weath. Rev. 111, 609–662 (1983).

    Article  ADS  Google Scholar 

  6. Jones, C. & Kiniry, J. CERES-Maize (Texas A & M Press, College Station, 1986).

    Google Scholar 

  7. Ritchie, J. T. & Otter, S. in ARS Wheat Yield Project, ARS-38 (ed. Willis, W. O.) 159–175 (Department of Agriculture, Washington DC, 1985).

    Google Scholar 

  8. Shugart, H. H. A Theory of Forest Dynamics (Springer, New York, 1984).

    Book  Google Scholar 

  9. Palmer, W. C. U.S. Weather Bureau Res. Pap. 45 (Library and Information Service Division, NOAA, Washington DC, 1965).

    Google Scholar 

  10. National Water Summary Water Supply Pap. 2350 (U.S. Geological Survey, U.S. Government Printing Office, 1990).

  11. Rudloff, W. World Climate (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1981).

    Google Scholar 

  12. Korzun, V. I. et al. (eds) Atlas of World Water Balance (UNESCO Press, 1977).

  13. Willmott, C. J., Rowe, C. M. & Mintz, Y. J. Climatol. 5, 589–606 (1985).

    Article  Google Scholar 

  14. Farnsworth, R. K. & Thompson, E. S. NOAA Tech. Rep. NWS 33, 34 (NOAA, Washington DC, 1982).

  15. Robinson, J. M. & Hubbard, K. G. Agron. J. 82, 1141–1148 (1990).

    Article  Google Scholar 

  16. Penman, H. L. Proc. R. Soc. A193, 120–146 (1948).

    ADS  CAS  Google Scholar 

  17. NOAA National Weather Service Handbook No. 1. (NOAA Washington DC, 1979).

  18. Abramapolous, F., Rosenzweig, C. & Choudhury, B. J. Clim. 1, 921–945 (1988).

    Article  ADS  Google Scholar 

  19. Del Genio, T. & Yao, M.-S. in Cumulus Parameterization (eds Emanuel, K. A. & Raymond D. A.) (American Meteorological Society, in the press).

  20. Adams, R. et al. Nature 345, 219–224 (1990).

    Article  ADS  Google Scholar 

  21. Overpeck, J. & Bartlein, P. J. in The Potential Effects of Global Climate Change on the United States, Appendix D. Forests (eds Smith, J. & Tirpak, D.) 1-1–1-32 (U.S. Environmental Protection Agency, Washington DC, 1990).

    Google Scholar 

  22. Meehl, G. & Washington, W. J. atmos. Sci. 45, 1476–1492 (1988).

    Article  ADS  Google Scholar 

  23. Mitchell, J. F. B., & Warrilow, D. A. Nature 330, 238–240 (1987).

    Article  ADS  Google Scholar 

  24. Chahine, M. T. EOS 73, 9–14 (1992).

    Article  ADS  Google Scholar 

  25. Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E. & Murphy, R. E. Bull. Am. met. Soc. 69, 22–27 (1988).

    Article  Google Scholar 

  26. National Research Council, Working Group 5 in Research Strategies for the U.S. Global Change Research Program 131–163 (National Academy Press, Washington DC, 1990).

  27. Priestley, C. H. B. & Taylor, R. J. Mon. Weath. Rev. 100, 81–92 (1972).

    Article  ADS  Google Scholar 

  28. Thornthwaite, C. W. Geog. Rev. 38, 55–89 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rind, D., Rosenzweig, C. & Goldberg, R. Modelling the hydrological cycle in assessments of climate change. Nature 358, 119–122 (1992). https://doi.org/10.1038/358119a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/358119a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing