Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast

Abstract

MOST genes involved in DNA replication in the yeast Saccharomyces cerevisiaeare transcribed transiently during late Gl as cells become committed to a new cell cycle at Start1. Their promoters all contain one or more versions of an 8-base-pair motif (ACGCGTNA) containing an Mlu I restriction enzyme site and called the Mlu I cell-cycle box (MCB)2. MCBs are both necessary and sufficient for the late Gl-specific transcription of theTMP1 thymidylate synthase andPOL1 DNA polymerase genes3,4. A different late Gl-specific 8-base-pair transcription element called the SCB (CACGAAAA; ref. S) is bound by a factor containing the Swi4 and Swi6 proteins6,7. We describe here the formation in vitro of complexes on TMP1 MCBs that contain the Swi6 protein and, we suggest, a protein of relative molecular mass 120,000 (p!20) that is distinct from Swi4. Transcription due to SCBs and MCBs occurs in the absence of Swi6 but it is no longer correctly regulated in the cell cycle. We suggest that Swi6 is an essential regulatory subunit of two different Start-dependent transcription factors. One factor (SBF) contains Swi4 and binds to SCBs, whereas the other (MBF) contains the protein p120 and binds MCBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Andrews, B. J. & Herskowitz, I. J. biol. Chem. 265, 14057–14060 (1990).

    CAS  Google Scholar 

  2. Pizzagalli, A., Valsasnini, P., Plevani, P. & Lucchini, G. Proc. natn. Acad. Sci. U.S.A. 85, 3772–3776 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Mclntosh, E. M., Atkinson, T., Storms, R. K. & Smith, M. Molec. cell. Biol. 11, 329–337 (1991).

    Article  Google Scholar 

  4. Gordon, C. B. & Campbell, J. L. Proc. natn. Acad. Sci. U.S.A. 88, 6058–6062 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Nasmyth, K. Cell 42, 225–235 (1985).

    Article  CAS  Google Scholar 

  6. Andrews, B. J. & Herskowitz, I. Nature 342, 803–833 (1989).

    Article  Google Scholar 

  7. Taba, M. R., Muroff, I., Lydall, D., Tebb, G. & Nasmyth, K. Genes Dev. 5, 2000–2013 (1991).

    Article  CAS  Google Scholar 

  8. Ammerer, G. Genes Dev. 4, 299–312 (1990).

    Article  CAS  Google Scholar 

  9. Kuwabara, M. D. & Sigman, D. S. Biochemistry 26, 7234–7238 (1987).

    Article  CAS  Google Scholar 

  10. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  11. Sturm, R., Baumruker, T., Franua, B. R. & Herr, w. Genes Dev. 1, 1147–1160 (1987).

    Article  CAS  Google Scholar 

  12. Guarente, L. & Mason, T. Cell 32, 1279–1286 (1983).

    Article  CAS  Google Scholar 

  13. Price, C., Nasmyth, K. & Schuster, T. J. Molec. Biol. 218, 543–556 (1991).

    Article  CAS  Google Scholar 

  14. Elledge, S. J. & Davis, R. W. Genes Dev. 4, 740–751 (1990).

    Article  CAS  Google Scholar 

  15. Cross, F. & Tinklenberg, A. H. Cell 65, 875–883 (1991).

    Article  CAS  Google Scholar 

  16. Nasmyth, K. & Dirick, L. Cell 66, 995–1013 (1991).

    Article  CAS  Google Scholar 

  17. Lydall, D., Ammerer, G. & Nasmyth, K. Genes Dev. 5, 2405–2419 (1991).

    Article  CAS  Google Scholar 

  18. Surana, U. et al. Cell 65, 145–161 (1991).

    Article  CAS  Google Scholar 

  19. Ghiara, J. B. et al. Cell 65, 163–174 (1991).

    Article  CAS  Google Scholar 

  20. Ogas, J., Andrews, B. J. & Herskowitz, I. Cell 66, 1015–1026 (1991).

    Article  CAS  Google Scholar 

  21. Barberis, A., Widenhorn, K., Vitelli, K. & Busslinger, M. Genes Dev. 4, 849–859 (1990).

    Article  CAS  Google Scholar 

  22. Moll, T., Dirick, L., Auer, H. & Nasmyth, K. J. Cell Sci. (in the press).

  23. Breeden, L. & Nasmyth, K. Nature 329, 651–654 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Lowndes, N. F., Mclnerny, C. J., Johnson, A. L., Fantes, P. A. & Johnston, L. H. Nature 355, 449–453 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Stillman, D. J., Bankier, A. T., Seddon, A., Groenhout, E. G. & Nasmyth, K. EMBO J. 7, 485–495 (1988).

    Article  CAS  Google Scholar 

  26. Dirick, L. & Nasmyth, K. Nature 351, 754–757 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirick, L., Moll, T., Auer, H. et al. A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast. Nature 357, 508–513 (1992). https://doi.org/10.1038/357508a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357508a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing