Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments

Abstract

PROGRESSIVE cerebral deposition of the amyloid β-peptide is an early and invariant feature of Alzheimer's disease. The β-peptide is released by proteolytic cleavages from the β-amyloid precursor protein (βAPP)1, a membrane-spanning glycoprotein expressed in most mammalian cells. Normal secretion of βAPP involves a cleavage in the β-peptide region2-3, releasing the soluble extramembranous portion4,5 and retaining a 10K C-terminal fragment in the membrane6. Because this secretory pathway precludes β-amyloid formation, we searched for an alternative proteolytic processing pathway that can generate β-peptide-bearing fragments from full-length β APP. Incubation of living human endothelial cells with a βAPP antibody revealed reinternalization of mature βAPP from the cell surface and its targeting to endosomes/lysosomes. After cell-surface biotinylation, full-length biotinylated βAPP was recovered inside the cells. Purification of lysosomes directly demonstrated the presence of mature βAPP and an extensive array of β-peptide-containing proteolytic products. Our results define a second processing pathway for βAPP and suggest that it may be responsible for generating amyloid-bearing fragments in Alzheimer's disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kang, J. et al. Nature 325, 733–736 (1987).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Esch, F. et al. Science 248, 1122–1124 (1990).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A. & Price, D. L. Science 248, 492–495 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Weidemann, A. et al. Cell 57, 115–126 (1989).

    CAS  Article  Google Scholar 

  5. 5

    Oltersdorf, T. et al. J. biol. Chem. 265, 4492–4497 (1990).

    CAS  Google Scholar 

  6. 6

    Selkoe, D. J. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7341–7345 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Chen, W. J., Goldstein, J. S. & Brown, M. S. J. biol. Chem. 265, 3116–3123 (1990).

    CAS  PubMed  Google Scholar 

  8. 8

    Gimbrone, M. A., Cotran, R. S. & Folkman, J. J. Cell Biol. 60, 673–684 (1974).

    CAS  Article  Google Scholar 

  9. 9

    Ponte, P. et al. Nature 331, 525–527 (1988).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Tanzi, R. E. et al. Nature 331, 528–530 (1988).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S. & Ito, H. Nature 331, 530–532 (1988).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Haass, C., Hung, A. Y. & Selkoe, D. J. J. Neurosci. 11, 3783–3793 (1991).

    CAS  Article  Google Scholar 

  13. 13

    Weibel, E. B. & Palade, M. D. J. Cell Biol. 23, 101–112 (1964).

    CAS  Article  Google Scholar 

  14. 14

    Golde, T. et al. Science 255, 728–730 (1992).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Parton, R. G. et al. J. Cell Biol. 113, 261–274 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Tamaoka, A., Kalaria, R. N. Lieberburg, I. & Selkoe, D. J. Proc. natn. Acad. Sci. U.S.A. 89, 1345–1349 (1992).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Estus, S. et al. Science 255, 726–728 (1992).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Benowitz, L. I. et al. Expl. Neurology 106, 237–250 (1989).

    CAS  Article  Google Scholar 

  19. 19

    Cole, G. M., Huynh, T. V. & Saitoh, T. Neurochem. Res. 10, 933–939 (1989).

    Article  Google Scholar 

  20. 20

    Buktenica, S., Olenick, S. J. & Frankfater, A. J. biol. Chem. 262, 9469–9476 (1987).

    CAS  PubMed  Google Scholar 

  21. 21

    Baskin, F., Rosenberg, R. G. & Greenberg, B. D. J. Neurosci. Res. 29, 127–132 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Goate, A. et al. Nature 349, 704–706 (1991).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Hunziker, W., Hartler, C., Matter, K. & Mellman, I. Cell 66, 907–920 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Lisanti, M. P., Sargiacomo, M., Graeve, L., Saltiel, A. R. & Rodriguez-Boulan, E. Proc. natn. Acad. Sci. U.S.A. 85, 9557–9561 (1988).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Storrie, B. & Madden, E. Meth. Enzym. 182, 203–210 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Dice, J. F. & Terlecky, S. P. Crit. Rev. Therap. Drug Carrier Systems 7, 211–233 (1990).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haass, C., Koo, E., Mellon, A. et al. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–503 (1992). https://doi.org/10.1038/357500a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing