Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional structure of a thermostable bacterial cellulase

Abstract

CELLULOSIC biomass is recycled by a variety of microorganisms occupying different habitats1. Studies of their cellulase systems have included the purification of enzyme components, the determination of their enzymological properties2 and the cloning and characterization of their structural genes3. Sequence analysis of more than 70 cellulases permits grouping into seven families corresponding to distinct structural types4,5. The three-dimensional structure of the catalytic core of cellobiohydrolase CBHII from the fungus Trichoderma reesei has been reported6. Here we show that endoglucanase CelD from Clostridium thermocellum, which is representative of a different family of cellulose-degrading enzymes consisting of at least 11 bacterial, fungal and plant endoglucanases5,7, has a globular structure, with an amino-terminal immunoglobulin-like domain tightly packed against a larger catalytic domain. The latter shows a novel protein fold, shaped like an α-barrel of 12 helices connected by loops that form the active site. The structure of a complex CelD with a substrate analogue suggests a mechanism for substrate hydrolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ljungdahl, L. G. & Eriksson, K. E. Adv. Microbiol. Ecol. 8, 237–299 (1985).

    Article  CAS  Google Scholar 

  2. Coughlan, M. P. Biotechnol. Genet. Engng Rev. 3, 39–109 (1985).

    Article  CAS  Google Scholar 

  3. Béguin, P. A. Rev. Microbiol. 44, 219–248 (1990).

    Article  Google Scholar 

  4. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. & Mornon, J.-P. Gene 81, 83–95 (1989).

    Article  CAS  Google Scholar 

  5. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. & Warren, R. A. J. Microbiol. Rev. 55, 303–315 (1991).

    CAS  Google Scholar 

  6. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K. C. & Jones, T. A. Science 249, 380–386 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Navarro, A., Chebrou, M.-C., Béguin, P. & Aubert, J.-P. Res. Microbiol. 142, 927–936 (1991).

    Article  CAS  Google Scholar 

  8. Joliff, G. et al. Biotechnology 4, 896–900 (1986).

    CAS  Google Scholar 

  9. Tokatlidis, K., Salamitou, S., Beguin, P., Dhurjati, P. & Aubert, J.-P. FEBS Lett. 291, 185–188 (1991).

    Article  CAS  Google Scholar 

  10. Kretsinger, R. H. Cold Spring Harb. Symp. quant. Biol. 52, 499–510 (1987).

    Article  CAS  Google Scholar 

  11. Lascombe, M.-B. et al. Proc. natn. Acad. Sci. U.S.A. 86, 607–611 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Deisenhofer, J. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  Google Scholar 

  13. Tomme, P. thesis, Univ. Ghent (1991).

  14. Vyas, N. K. Curr. Opin. struct. Biol. 1, 732–740 (1991).

    Article  CAS  Google Scholar 

  15. Tomme, P. et al. J. biol. Chem. 266, 10313–10318 (1991).

    CAS  PubMed  Google Scholar 

  16. Chauvaux, S., Béguin, P. & Aubert, J.-P. J. biol. Chem. (in the press).

  17. Kelly, J. A., Sielecki, A. R., Sykes, B. D., James, M. N. G. & Phillips, D. C. Nature 282, 875–878 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Gebbler, J. et al. J. biol. Chem. (in the press).

  19. Joliff, G., Béguin, P. & Aubert, J.-P. Nucleic Acids Res. 14, 8605–8613 (1986).

    Article  CAS  Google Scholar 

  20. Joliff, G. et al. J. molec. Biol. 189, 249–250 (1986).

    Article  CAS  Google Scholar 

  21. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  22. CCP4 The S.E.R.C. Collaborative Computing Project No. 4 (Daresbury Laboratories, Warrington, UK, 1979).

  23. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  24. Greer, J. Meth. Enzym. 115, 206–224 (1985).

    Article  CAS  Google Scholar 

  25. Jones, T. A. & Thirup, S. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  26. Brünger, A. T. J. molec. Biol. 203, 803–816 (1988).

    Article  Google Scholar 

  27. Priestle, J. P. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  28. Chothia, C. & Lesk, A. M. EMBO J. 5, 823–826 (1986).

    Article  CAS  Google Scholar 

  29. Holmgren, A. & Bränden, C.-I. Nature 342, 248–251 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juy, M., Amrt, A., Alzari, P. et al. Three-dimensional structure of a thermostable bacterial cellulase. Nature 357, 89–91 (1992). https://doi.org/10.1038/357089a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357089a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing