Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A eukaryotic DNA glycosylase/lyase recognizing ultraviolet light-induced pyrimidine dimers

Abstract

CYCLOBUTANE pyrimidine dimers (CPDs) are the predominant product of photodamage in DNA after exposure of cells to ultraviolet light1,2 and are cytotoxic, mutagenic and carcinogenic in a variety of cellular and animal systems3–5. In prokaryotes, enzymes and protein complexes have been characterized that remove or reverse CPDs in DNA6–8. Micrococcus luteus and T4 phage-infected Escherichia coli contain a specific N-glyco-sylase/apurinic-apyrimidinic lyase that catalyses a two-step DNA incision process at sites of CPDs, thus initiating base excision repair of these lesions7,9–2. It is well established that CPDs are recognized and removed from eukaryotic DNA by excision repair processes but very little information exists concerning the nature of the proteins involved in CPD recognition and DNA incision events7,12,13. We report here that an enzyme functionally similar to the prokaryotic N-glycosylase/apurinic–apyrimidinic lyases exists in Saccharomyces cerevisiae. To our knowledge, this is the first time such an activity has been found in a eukaryote and is also the first example of an organism having both direct reversal and base excision repair pathways for the removal of CPDs from DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Patrick, M. H. & Gray, D. Photochem. Photobiol. 24, 507–513 (1976).

    Article  CAS  Google Scholar 

  2. Patrick, M. H. Photochem. Photobiol. 25, 357–372 (1977).

    Article  CAS  Google Scholar 

  3. Harm, W. The Biological Effects of Ultraviolet Radiation (Cambridge Univ. Press, 1980).

    Google Scholar 

  4. Coohill, T. P. Photochem. Photobiol. 46, 1043–1050 (1987).

    Article  CAS  Google Scholar 

  5. Hart, R. W. & Setlow, R. B. Molecular Mechanisms of DNA Repair Part B 719–724 (Plenum. New York, 1975).

    Book  Google Scholar 

  6. Sancar, A. & Sancar, G. B. A. Rev. Biochem. 57, 29–67 (1988).

    Article  CAS  Google Scholar 

  7. Friedberg, E. C. DNA Repair (Freeman, New York, 1985).

    Google Scholar 

  8. Sancar, G. B. Mutat. Res. 236, 147–160 (1990).

    Article  CAS  Google Scholar 

  9. Dodson, M. L. & Lloyd, R. S. Mutat. Res. 218, 49–65 (1990).

    Article  Google Scholar 

  10. Haseltine, W. A. et al. Nature 285, 634–641 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Grafstrom, R. H., Park, L. & Grossman, L. J. biol. Chem. 257, 13465–13474 (1982).

    CAS  PubMed  Google Scholar 

  12. Radany, E. H. & Friedberg, E. C. J. Virol. 41, 88–96 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Friedberg, E. C. et al. J. supramolec. Struct cell. Biochem. 16, 91–103 (1981).

    Article  CAS  Google Scholar 

  14. Gossett, J., Lee, K., Cunningham, R. P. & Doetsch, P. W. Biochemistry 27, 2629–2634 (1988).

    Article  CAS  Google Scholar 

  15. Sancar, A., Smith, F. W. & Sancar, G. B. J. biol. Chem. 259, 6028–6032 (1984).

    CAS  PubMed  Google Scholar 

  16. Doetsch, P. W., Helland, D. E. & Haseltine, W. A. Biochemistry 25, 2212–2220 (1986).

    Article  CAS  Google Scholar 

  17. Friedberg, E. C., Ganesan, A. K. & Seawall, P. C. Meth. Enzym. 65, 191–201 (1980).

    Article  CAS  Google Scholar 

  18. Radany, E. H. & Friedberg, E. C. Nature 286, 182–185 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Seawall, P. C., Smith, C. A. & Ganesan, A. K. J. Virol. 35, 790–792.

  20. Mazumder, A. et al. Am. chem. Soc. 111, 8029–8030 (1989).

    Article  CAS  Google Scholar 

  21. Gordon, L. K. & Haseltine, W. A. J. biol. Chem. 255, 12047–12050 (1980).

    CAS  PubMed  Google Scholar 

  22. Friedberg, E. C. Microbiol. Rev. 52, 70–102 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sung, P., Prakash, L., Matson, S. W. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 8951–8955 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Jentsch, S., McGrath, J. P. & Varshavsky, A. Nature 329, 131–134 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Weinert, T. A. & Hartwell, L. H. Science 241, 317–322 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Bekker, M. L. Kaboev, O. K., Akhmedov, A. T. & Luchkina, L. A. J. Bact. 142, 322–324 (1980).

    CAS  PubMed  Google Scholar 

  27. Waldstein, E. A., Peller, S. & Setlow, R. B. Proc. natn. Acad. Sci. U.S.A. 76, 3746–3750 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Prakash, L. Mutat. Res. 45, 13–20 (1977).

    Article  CAS  Google Scholar 

  29. Reynolds, R. J. & Friedberg, E. C. J. Bact. 146, 692–704 (1981).

    CAS  PubMed  Google Scholar 

  30. Bankman, M., Prakash, L. & Prakash, S. Nature 355, 555–558 (1992).

    Article  ADS  Google Scholar 

  31. Dowd, D. R. & Lloyd, R. S. J. biol. Chem. 265, 3424–3431 (1990).

    CAS  PubMed  Google Scholar 

  32. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  33. Payne, G., Heelis, P. F., Rohrs, B. R. & Sancar, A. Biochemistry 26, 7121–7127 (1987).

    Article  CAS  Google Scholar 

  34. Baily, V. & Verly, W. G. Biochem. J. 259, 761–768 (1989).

    Article  Google Scholar 

  35. Hasegawa, S. L. et al. Nucleic Acids Res. 19, 4915–4920 (1991).

    Article  CAS  Google Scholar 

  36. Levin, J. D. & Demple, B. J. biol. Chem. 263, 8066–8071 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, K., Kirn, P. & Doetsch, P. A eukaryotic DNA glycosylase/lyase recognizing ultraviolet light-induced pyrimidine dimers. Nature 356, 725–728 (1992). https://doi.org/10.1038/356725a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356725a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing