Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The S. cerevisiae SEC65 gene encodes a component of yeast signal recognition particle with homology to human SRP19

Abstract

TRANSLOCATION of proteins across the endoplasmic reticulum (ER) membrane represents the first step in the eukaryotic secretory pathway. In mammalian cells, the targeting of secretory and membrane protein precursors to the ER is mediated by signal recognition particle (SRP), a cytosolic ribonucleoprotein complex comprising a molecule of 7SL RNA and six polypeptide subunits (relative molecular masses 9, 14, 19, 54, 68 and 72K)1. In Sac-charomyces cerevisiae, a homologue of the 54K subunit (SRP54)2,3co-purifies with a small cytoplasmic RNA, scRl (refs 4, 5). Genetic data indicate that SRP54 and scRl are involved in translocation in vivo, suggesting the existence of an SRP-like activity in yeast5,6. Whether this activity requires additional components similar to those found in mammalian SRP is not known. We have recently reported a genetic selection that led to the isolation of a yeast mutant, sec65-l, which is conditionally defective in the insertion of integral membrane proteins into the ER7. Here we report the cloning and sequencing of the SEC65 gene, which encodes a 31.2K protein with significant sequence similarity to the 19K subunit of human SRP (SRP19)8. We also report the cloning of a multicopy suppressor of sec65-l, and its identification as the previously definedSRP54gene, providing genetic evidence for an interaction between these gene products in vivo

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walter, P. & Blobel, G. Nature 99, 691–698 (1982).

    Article  ADS  Google Scholar 

  2. Hann, B. C. Poritz, M. A. & Walter P. J. Cell Biol. 109, 3223–3230 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Amaya, Y., Nakano, A., Ito, K. & Mori, M. J. Biochem. 107, 457–463 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Felici, F., Cesareni, G. & Hughes, J. M. Molec. Cell Biol., 9, 3260–3268 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hann, B. C. & Walter, P. Cell 67, 131–144 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Amaya, Y. & Nakano, A. FEBS Lett. 283, 325–328 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Stirling, C. J. Molec. Biol. Cell (in the press).

  8. Lingelbach, K. et al. Nucleic Acids Res. 16, 9431–9442 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci. U.S.A. 78, 6354–6358 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Hann, B. C., Stirling, C. J., & Walter, P. Nature 356, 532–533 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. Yeast 2, 163–168 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Sikorski, R. S. & Hieter, P. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. de Montigny, J., Belarbi A., Hubert, J. C. & Lacroute, F. Molec. gen. Genet. 215, 455–462 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Vieira, J. & Messing, J. Meth. Enzym. 153, 3–11 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Henikoff, S. Meth. Enzym. 155, 156–165 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Struhl, K. Nucleic Acids Res. 13, 8587–8601 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parker, R. et al. Molec. Cell Biol. 8, 3150–3159 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woods, A. et al. J. Cell Sci. 93, 491–500 (1989).

    PubMed  Google Scholar 

  19. Nilsson, B. L. Abrahmsen, L. & Uhlen, M. EMBO J. 4, 1075–1080 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deshaies, R. J. & Schekman, R. Molec. Cell Biol. 10, 6024–6035 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirling, C., Hewitt, E. The S. cerevisiae SEC65 gene encodes a component of yeast signal recognition particle with homology to human SRP19. Nature 356, 534–537 (1992). https://doi.org/10.1038/356534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356534a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing