Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cation microsegregation and ionic mobility in mixed alkali glasses

Abstract

MUCH is known about short-range (<5Å) structural order in oxide glasses from experimental probes of local structure such as X-ray absorption fine structure (XAFS)1, but over the medium range (5-20 Å) their structures are poorly understood. Computer simulations based on measured parameters for local atomic environments, however, can provide structural models on the nanometre scale, which enable dynamic properties such as ionic transport to be considered. Here we describe a molecular dynamics simulation of the effects of mixed alkali cations on the structure of binary silicate glasses. It is well known that the ionic conductivity of alkali glasses falls markedly when more than one alkali is present2. We demonstrate that the alkalis segregate from the silicate network over distances of a few ångströms. Although ionic mobility is expected to be higher in these microsegregated regions than in the surrounding silicate network, we suggest that stochastic mixing of alkalis nevertheless impedes the hopping process of a given alkali ion. This is manifest as an increase in the average activation energy for hopping and results in a lowering of the total ionic conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greaves, G. N., in Glass Science and Technology, Vol. 4B (eds Uhlmann, D. R. & Kreidl, N.) 1–76 (Academic, London, 1990).

    Google Scholar 

  2. Day, D. E. J. non-cryst. Solids 21, 343–372 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Bell, R. J. & Dean, P. Phil. Mag. 25, 1381–1398 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Gladden, L. F. J. non-cryst. Solids 119, 318–330 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Keen, D. A. & McGreevy, R. L. Nature 344, 423–425 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Mitra, S. K. Phil. Mag. B45, 529–548 (1982).

    Article  CAS  Google Scholar 

  7. Vessal, B., Amini, M., Fincham, D. & Catlow, C. R. A. Phil. Mag. B60, 753–775 (1989).

    Article  CAS  Google Scholar 

  8. Soules, T. F. J. chem. Phys. 71, 4570–4558 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Huang, C. & Cormack, A. N. J. chem. Phys. 93, 8180–8186 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Dupree, R., Holland, D., McMillan, P. W. & Pettifer, R. F. D. J. non-cryst. Solids 68, 399–410 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Greaves, G. N. J. non-cryst. Solids 71, 203–217 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Vessal, B., Leslie, M. & Catlow, C. R. A. Molec. Simul. 3, 123–136 (1989).

    Article  Google Scholar 

  13. Parker, S. C. thesis, Univ. of London (1982).

  14. Greaves, G. N. et al. Phil. Mag. A64, 1059–1072 (1991).

    Article  CAS  Google Scholar 

  15. Greaves, G. N., Fontaine, A., Raoux, D. & Gurman, S. J. Nature 293, 611–616 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Kamitsos, E. I., Patsis, A. P. & Chryssikos, G. D. Phys. Chem. Glasses 32, 219–221 (1991).

    CAS  Google Scholar 

  17. Mole, R. thesis, Univ. of Kent (1991).

  18. Catlow, C. R. A. Phys. Stat. Sol. 46, 191–198 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Bunde, A., Maas, P. & Ingram, M. D. Ber. Bunsenges. Phys. Chem. 95, 977–981 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vessal, B., Greaves, G., Marten, P. et al. Cation microsegregation and ionic mobility in mixed alkali glasses. Nature 356, 504–506 (1992). https://doi.org/10.1038/356504a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356504a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing