Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defect-induced melting and solid-state amorphization

Abstract

DESPITE the strong interest in melting over the past 100 years, a general theory for the crystal–liquid transition has not been established1. Lattice-instability models, which are either vibrational2, elastic3, isochoric4, defective5 or entropic6 in nature, all predict a melting point somewhat above the experimentally observed thermodynamic melting temperature, with the ultimate stability limit of a superheated crystal being determined by the equality of crystal and liquid entropies4,6; this forces regular melting to be a first-order transition. Here I present a model of melting that is driven by the incorporation into the lattice of randomly frozenin defects. An isentropic condition limits the stability of the crystal as a function of defect concentration; above the glass transition temperature the crystal melts to a liquid, whereas below it 'melting' produces an amorphous solid. This model yields a generic melting diagram with a tunable parameter (defect concentration) that can characterize the static disorder present in solid-state amorphization7–9, the thermodynamic stability of small clusters10 and nanocrystalline materials11, and the frustration present in spin glasses12. The model is also relevant to glacial13, geological14 and stellar-atmospheric15 melting processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cahn, R. W. Nature 323, 668–669 (1986).

    Article  ADS  Google Scholar 

  2. Lindemann, F. A. Z. Phys. 11, 609–615 (1910).

    CAS  Google Scholar 

  3. Born, M. J. chem. Phys. 7, 591–599 (1939).

    Article  ADS  CAS  Google Scholar 

  4. Tallon, J. L. Nature 342, 658–660 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Gorecki, T. Scripta metall. 11, 1051–1057 (1977).

    Article  CAS  Google Scholar 

  6. Fecht, H. J. & Johnson, W. L. Nature 334, 50–51 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Johnson, W. L. Progr. Mat. Sci. 30, 81–134 (1986).

    Article  CAS  Google Scholar 

  8. Samwer, K. Phys. Rep. 161, 1–41 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F. & Kluge, M. J. Mat. Res. 5, 286–301 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Ajavan, P. M. & Marks, L. D. Phys. Rev. Lett. 60, 585–587 (1988).

    Article  ADS  Google Scholar 

  11. Gleiter, H. Prog. Mat. Sci. 33, 223–315 (1989).

    Article  CAS  Google Scholar 

  12. LeDoussal, P. & Harris, A. B. Phys. Rev. Lett. 61, 625–629 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Mishima, O., Calvert, L. D. & Whalley, E. Nature 310, 393–395 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Richet, P. Nature 331, 56–57 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Kouchi, A. & Kuroda, T. Nature 344, 134–136 (1990).

    Article  ADS  Google Scholar 

  16. Singh, H. B. & Holz, A. Solid State Comm. 45, 985–987 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Perepezko, J. H. & Paik, J. S. J. non-cryst. Sol. 61 & 62, 113–116 (1984).

    Article  Google Scholar 

  18. Thompson, C. V. & Spaepen, F. Acta metall. 27, 1855–1859 (1979).

    Article  CAS  Google Scholar 

  19. Fecht, H. J., Perepezko, J. H., Lee, M. C. & Johnson, W. L. J. appl. Phys. 68, 4494–4502 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Goodman, D., Cahn, J. W. & Bennett, L. H. Bull. Alloy Phase Diag. 2, 29–35 (1981).

    Article  CAS  Google Scholar 

  21. Wollenberger, H. J. in Physical Metallurgy (eds Cahn, R. W. & Haasen, P.) 1139 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  22. Doyama, M. & Koehler, J. S. Acta Metall. 24, 871–879 (1976).

    Article  CAS  Google Scholar 

  23. Kauzmann, W. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  24. Fecht, H. J., Fu, Z. & Johnson, W. L. Phys. Rev. Lett. 64, 1753–1756 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Sethna, J. P., Shore, J. D. & Huang, M. Phys. Rev. B44, 4943–4959 (1951).

    Article  Google Scholar 

  26. Fecht, H. J., Desré P. & Johnson, W. L. Phil. Mag. B59, 577–585 (1989).

    Article  CAS  Google Scholar 

  27. Highmore, R. J. & Greer, A. L. Nature 339, 363–365 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Yukalov, V. I. Phys. Rev. B32, 436–446 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Lifshitz, E. M. & Pitaevski, L. P. Statistical Physics, 3rd edn (Pergamon, Oxford, 1980).

    Google Scholar 

  30. Gorecki, T. Z. Metallkunde 70, 121–126 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fecht, H. Defect-induced melting and solid-state amorphization. Nature 356, 133–135 (1992). https://doi.org/10.1038/356133a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356133a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing