Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Material flux and porosity changes during sediment diagenesis

Abstract

UNDERSTANDING the changes in porosity that occur during burial of sediments is of importance both in modelling fluid flow in sedimentary basins and for prediction of petroleum reservoir quality. When deposited, up to 50% of the volume of sands is intergranular pore space. Porosity generally decreases with depth because of compaction and precipitation of diagenetic minerals, but some sandstones retain an anomalously high porosity. Whether this is due to dissolution and removal of material or to its local redistribution is not clear. We originally intended to quantify losses of major chemical components during burial of a complete sedimentary unit. We have investigated ten reservoir sandstones, of Permian to Tertiary age, from oilfields worldwide. These show consistent results, and here we present detailed data from four of them. We found that the silica content of these sandstones actually increased, by 220 to 350 kg m−3, following compaction. No statistically significant changes were observed for aluminium, potassium or sodium. The flux of silica cannot be modelled satisfactorily using currently accepted values of permeability, silica solubility and flow rates, posing a challenge for existing models of fluid flow and ore emplacement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baldwin, B. & Butler, C. O. Bull. Am. Assoc. Petrol. Geol. 69, 622–626 (1985).

    Google Scholar 

  2. Schmidt, V. & McDonald, D. A. S.E.P.M. Spec. Publ. 26, 157–207 (1979).

    Google Scholar 

  3. Bjørlykke, K. in Sediment Diagenesis (eds Parker, A. & Sellwood, B. W.) 169–213 (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  4. Bjø rlykke, K., Aagaard, P., Dypvik, H., Hastings, D. S. & Harper, A. S. in Habitat of Hydrocarbons on the Norwegian Continental Shelf (eds Spencer, A. M. et al.) 275–286 (Graham & Trotman, London, 1986).

    Google Scholar 

  5. However, J., Eslinger, E., Hower, M. E. & Perry, E. A. Bull. geol. Soc. 87, 725–737 (1976).

    Article  Google Scholar 

  6. Foscolos, A. E. & Powell, T. G. in Facts and Principles of World Petroleum Occurrence, Memoir 6 (ed. Miall, A. D.) 153–172 (Canadian Society of Petroleum Geologists, Calgary, 1980).

    Google Scholar 

  7. Loucks, R. G., Dodge, M. M. & Galloway, W. E. Bureau Econ. Geol. Rep. Investigation No. 149. (University of Texas 1986).

  8. Curtis, C. D., Petrowski, C. & Oertel, G. Nature 235, 98–100 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Coleman, M. L. & Raiswell, R. Geochim. cosmochim. Acta 45, 329–340 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Curtis, C. D., Coleman, M. L. & Love, L. G. Geochim. cosmochim. Acta 50, 2321–2334 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Lippmann, F. Geol. Rundsch. 43, 475–503 (1955).

    Article  ADS  CAS  Google Scholar 

  12. Oertel, G. & Curtis, C. D. Geol. Soc. Am. Bull. 83, 2597–2606 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Raiswell, R. Sedimentology 17, 147–171 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Thompson, M. & Walsh, J. N. A Handbook of ICP Spectrometry (Blackie, Glasgow, 1983).

    Google Scholar 

  15. Curtis, B. F. in Procedures in Sedimentary Petrology (ed. Carver, R. E.) 335–364 (Wiley-Interscience, New York, 1971).

    Google Scholar 

  16. Garrels, R. M. & Mackenzie, F. T. Evolution of Sedimentary Rocks (Norton, New York, 1971).

    Google Scholar 

  17. Robinson, A. G. & Gluyas, J. G. Mar. Petrol. Geol. (in the press).

  18. Pettijohn, E. J. Sedimentary Rocks, 3rd edn, 76–77 (Harper & Row, New York, 1975).

    Google Scholar 

  19. Raiswell, R. & White, N. J. M. Sedim. Geol. 20 (1978).

  20. Pettijohn, E. J. Sedimentary Rocks, 3rd edn, 20–23 (Harper & Row, New York, 1975).

    Google Scholar 

  21. Irwin, H. & Hurst, A. in Petroleum Geochemistry & Exploration of Europe, Geol. Soc. Spec. Publ. 12 (ed. Brooks, J.) 127–146, 1983).

    Google Scholar 

  22. McLimans, R. K. Appl. Geochem. 2, 585–603 (1987).

    Article  CAS  Google Scholar 

  23. Boles, J. R. in Clays and the Resource Geologist (ed. Longstaffe, F. J.) 148–168 (Mineralogical Society of Canada, 1981).

    Google Scholar 

  24. Dypvik, H. Am. Assoc. Petrol. Geol. Bull. 67, 160–165 (1983).

    Google Scholar 

  25. Evans, I. J. in Water Rock Interaction WRI-6 (ed. Miles, D.) 219–222 (Balkema, Rotterdam, 1989).

    Google Scholar 

  26. Bethke, C. M., Harrison, W. J., Upson, C. & Altaner, S. P. Science 239, 261–267 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Robinson, A. G. & Gluyas, J. G. in Abstr. 13th Int. Sedimentol. Congress 462 (International Association of Sedimentology. Utrecht, 1990).

    Google Scholar 

  28. Bennett, P. C. & Siegal, D. I. in Water Rock Interaction WRI-6 (ed. Miles, D.) 219–222 (Balkema, Rotterdam. 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluyas, J., Coleman, M. Material flux and porosity changes during sediment diagenesis. Nature 356, 52–54 (1992). https://doi.org/10.1038/356052a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing