Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Travel at low energetic cost by swimming and wave-riding bottlenose dolphins

Abstract

OVER the past 50 years there has been much speculation about the energetic cost of swimming and wave-riding by dolphins1–11. When aligned properly in front of the bow of moving ships1–3, in the stern wake of small boats4,5, on wind waves6, and even in the wake of larger cetaceans7–9, the animals appear to move effortlessly through the water without the benefit of propulsive strokes by the flukes. Theoretically, body streamlining as well as other anatomical and behavioural adaptations contribute to low transport costs in these animals. The economy of movement permitted by wave-riding has been perceived as an energetic advantage for the swimming dolphin2,310, but has been hard to prove in the absence of physiological data for exercising cetaceans. Here we determine the aerobic and anaerobic costs of swimming and wave-riding in bottlenose dolphins and find that the minimum cost of transport for swimming dolphins is 1.29±0.05 J kg-1 m-1 at a cruising speed of 2.1 m s-1. Aerobic costs are nearly twice as high for swimming seals and sea lions, and 8–12 times higher for human swimmers12. Wave-riding by dolphins provides additional benefits in terms of speed. The results indicate that behavioural, physiological and morphological factors make swimming an economical form of high-speed travel for dolphins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Scholander, P. F. Science 129, 1085–1087 (1959).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Norris, K. S. & Prescott, J. H. Univ. Calif. Publns Zool. 63, 291–402 (1961).

    Google Scholar 

  3. 3

    Shane, S. H., Wells, R. S. & Wursig, B. Mar. Mammal Sci. 2, 34–63 (1986).

    Article  Google Scholar 

  4. 4

    Ridgway, S. H., Scronce, B. L. & Kanwisher, J. Science 166, 1651–1654 (1969).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ridgway, S. H. in Mammals of the Sea: Biology and Medicine (ed. Ridgway, S. H.) 590–747 (Thomas, Springfield, Illinois, 1972).

    Google Scholar 

  6. 6

    Woodcock, A. H. & McBride, A. F. J. exp. Biol. 28, 215–217 (1951).

    Google Scholar 

  7. 7

    Wursig, B. & Wursig, M. Fishery Bull. 77, 399–412 (1979).

    Google Scholar 

  8. 8

    McBride, A. F. & Kritzler, H. J. Mammal. 32, 251–266 (1951).

    Article  Google Scholar 

  9. 9

    Lang, T. G. in Whales, Dolphins and Porpoises (ed, Norris, K. S.) 410–432 (Univ. Calif. Press, Berkeley, 1966).

    Google Scholar 

  10. 10

    Hertel, H. in The Biology of Marine Mammals (ed. Andersen, H. T.) 31–63 (Academic, New York, 1969).

    Google Scholar 

  11. 11

    Gray, J. J. exp. Biol. 13, 192–199 (1936).

    Google Scholar 

  12. 12

    Williams, T. M., Kooyman, G. L. & Croll, D. A. J. comp. Physiol. B 160, 637–644 (1991).

    CAS  Article  Google Scholar 

  13. 13

    Ponganis, P. J., Kooyman, G. L., Zornow, M. H., Castellini, M. A. & Croll, D. A. J. comp. Physiol. B 160, 473–482 (1990).

    CAS  Article  Google Scholar 

  14. 14

    Zar, J. H. Biostatistical Analysis (Prentice-Hall, Englewood Cliffs, NJ. 1974).

    Google Scholar 

  15. 15

    Williams, T. M. & Kooyman, G. L. Physiol. Zool. 58, 576–589 (1985).

    Article  Google Scholar 

  16. 16

    Lang, T. G., & Pryor, K. Science 152, 531–533 (1966).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Brett, J. R. J. Fish. Res. Board Can. 21, 1183–1226 (1964).

    Article  Google Scholar 

  18. 18

    Schmidt-Nielsen, K. Science 177, 222–228 (1972).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Fedak, M. A. in Diving in Mammals and Man (eds Brubakk, A., Kanwisher, J. W. & Sundnes, G.) 11–32 (Tapir, Trondheim, Norway, 1986).

    Google Scholar 

  20. 20

    Homer, I. J. appl. Physiol. 33, 502–509 (1972).

    Article  Google Scholar 

  21. 21

    Au, D. & Weihs, D. Nature 284, 548–550 (1980).

    ADS  Article  Google Scholar 

  22. 22

    Blake, R. W. J. mar. Biol. Assoc. 63, 61–70 (1983).

    Article  Google Scholar 

  23. 23

    Bartholomew, G. A. in Animal Physiology: Principles and Adaptations (ed. Gordon, M. S.) 57–110 (Macmillan, New York, 1977).

    Google Scholar 

  24. 24

    Aleyev, Yu. G. Nekton (Junk, The Hague, Holland 1977).

    Book  Google Scholar 

  25. 25

    Williams, T. M. et al. J. mar. Biol. Assoc. 71, 727–728 (1991).

    Article  Google Scholar 

  26. 26

    Goforth, H. W. Jr. in The Bottlenose Dolphin (eds Leatherwood, S. & Reeves, R. R.) 559–574 (Academic, San Diego, 1990).

    Book  Google Scholar 

  27. 27

    Williams, T. M. J. comp. Physiol. A 164, 815–824 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, T., Friedl, W., Fong, M. et al. Travel at low energetic cost by swimming and wave-riding bottlenose dolphins. Nature 355, 821–823 (1992). https://doi.org/10.1038/355821a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing