Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magic numbers and stable structures for fullerenes, fullerides and fullerenium ions

Abstract

MACROSCOPIC amounts of the two fullerenes C60 and C70 have been available for a year1, and have already had an enormous impact on research in chemistry and physics. Experimentalists are now turning their attention to the higher fullerenes2,3. Qualitative molecular-orbital theory predicts4–6 stability for Cn with n = 60, 70, (72), 76, 78,84,..., of which all but C72 have now been produced by evaporation of graphite1,3, and in general for infinite series of closed-shell neutral fullerenes for n=60 + 6k (k -£ 1), 70 + 30k, 84 + 36k (all k)7–9. Recent experimental observations of endohedral LaCn metallofullerenes10 have been rationalized in terms of 'magic numbers' for fulleride anions C2n, for which special stability is predicted11 at n =74, 82, 88,... ; but the exact extent of charge transfer in these complexes has yet to be determined. Here we present calculations of magic numbers in the fullerenium sequence C2+n (n =74,80, (88), 92) and show that the electron count determines stability and the atom count determines structure in all three (neutral, anionic and cationic) series. Stable cations have two carbons more, and stable anions two carbons less, than the corresponding stable neutral cluster. We predict likely structures of the 'magic' cations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krätschmer, K., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  2. Diederich, F. et al. Science 252, 548–551 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Ettl, R., Chao, I., Diederich, F. & Whetten, R. L. Nature 353, 149–153 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Manolopoulos, D. E. J. chem. Soc. Faraday Trans. 87, 2861–2862 (1991).

    Article  CAS  Google Scholar 

  5. Fowler, P. W., Manolopoulos, D. E. & Batten, R. C. J. chem. Soc. Faraday Trans. 87, 3103–3104 (1991).

    Article  CAS  Google Scholar 

  6. Fowler, P. W. J. chem. Soc. Faraday Trans. 87, 1945–1946 (1991).

    Article  CAS  Google Scholar 

  7. Fowler, P. W. & Steer, J. I. J. chem. Soc. Chem. Commun. 1403–1405 (1987).

  8. Fowler, P. W., Cremona, J. E. & Steer, J. I. Theor. Chim Acta. 73, 1–26 (1988).

    Article  CAS  Google Scholar 

  9. Fowler, P. W. J. chem. Soc. Faraday Trans. 86, 2073–2077 (1990).

    Article  CAS  Google Scholar 

  10. Chai, Y. et al. J. phys. Chem. (in the press).

  11. Manolopoulos, D. E. & Fowler, P. W. Chem. Phys. Lett. 187, 1–7 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Haufler, R. E. et al. Mat. Res. Soc. Proc. 206, 627–638 (1991).

    Article  CAS  Google Scholar 

  13. Kroto, H. W. Nature 329, 529–531 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Manolopoulos, D. E., May, J. C. & Down, S. E. Chem. Phys. Lett. 181, 105–111 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Diederich, F. et al. Science (in the press).

  16. Rosen, A. & Wastberg, B. J. Am. chem. Soc. 110, 8701–8703 (1988).

    Article  CAS  Google Scholar 

  17. Chang, A. H. H., Ermler, W. C. & Pitzer, R. M. J. chem. Phys. 94, 5004–5010 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Johnson, R. D., de Vries, M. S., Salem, J., Bethune, D. S. & Yannoni, C. S. Nature (in the press).

  19. Weaver, J. H. et al. Chem. Phys. Lett. (in the press).

  20. Fowler, P. W. Chem. Phys. Lett. 131, 444–450 (1986).

    Article  ADS  CAS  Google Scholar 

  21. de Heer, W. A., Knight, W. D., Chou, M. Y. & Cohen, M. L. Solid State Phys. 40, 93–181 (1981).

    Article  Google Scholar 

  22. Stone, A. J. Inorg. Chem. 20, 563–571 (1981).

    Article  CAS  Google Scholar 

  23. Wade, K. J. chem. Soc. Chem. Commun. 792–793 (1971).

  24. Holloway, J. H. et al. J. chem. Soc. Chem. Commun. 966–969 (1991).

  25. Guo, T., Jin, C. & Smalley, R. E. J. phys. Chem. 95, 4948–4950 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, P., Manolopoulos, D. Magic numbers and stable structures for fullerenes, fullerides and fullerenium ions. Nature 355, 428–430 (1992). https://doi.org/10.1038/355428a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355428a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing