Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tit for tat in heterogeneous populations


THE 'iterated prisoner's dilemma' is now the orthodox paradigm for the evolution of cooperation among selfish individuals. This viewpoint is strongly supported by Axelrod's computer tournaments, where 'tit for tat' (TFT) finished first1. This has stimulated interest in the role of reciprocity in biological societies1–8. Most theoretical investigations, however, assumed homogeneous populations (the setting for evolutionary stable strategies9,10) and programs immune to errors. Here we try to come closer to the biological situation by following a program6 that takes stochasticities into account and investigates representative samples. We find that a small fraction of TFT players is essential for the emergence of reciprocation in a heterogeneous population, but only paves the way for a more generous strategy. TFT is the pivot, rather than the aim, of an evolution towards cooperation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984).

    MATH  Google Scholar 

  2. Axelrod, R. & Hamilton, W. D. Science 211, 1390–1396 (1981).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Trivers, R. Social Evolution (Cummings, Menlo Park, 1985).

    Google Scholar 

  4. Axelrod, R. & Dion, D. Science 242, 1385–1390 (1988).

    ADS  CAS  Article  Google Scholar 

  5. Boyd, R. & Lorberbaum, J. P. Nature 327, 58–59 (1987).

    ADS  Article  Google Scholar 

  6. May, R. M. Nature 327, 15–17 (1987).

    ADS  Article  Google Scholar 

  7. Milinski, M. Nature 325, 434–435 (1987).

    ADS  Article  Google Scholar 

  8. Wilkinson, G. S. Nature 308, 181–184 (1984).

    ADS  Article  Google Scholar 

  9. Maynard Smith, J. Evolution and the Theory of Games (Cambridge University Press, UK, 1982).

    Book  Google Scholar 

  10. Hofbauer, J. & Sigmund, K. The Theory of Evolution and Dynamical Systems (Cambridge University Press, UK, 1988).

    MATH  Google Scholar 

  11. Axelrod, R. in Genetic Algorithms and Simulated Annealing (ed. Davis, D.) (Pitman, London, 1987).

    Google Scholar 

  12. Selten, R. Internat. J. Game Th. 4, 25–55 (1975).

    Article  Google Scholar 

  13. Boyd, R. J. theor. Biol. 136, 47–56 (1989).

    CAS  Article  Google Scholar 

  14. Nowak, M. & Sigmund, K. J. theor. Biol. 137, 21–26 (1989).

    CAS  Article  Google Scholar 

  15. Nowak, M. & Sigmund, K. Acta appl. Math. 20, 247–265 (1990).

    MathSciNet  Article  Google Scholar 

  16. Nowak, M. Theor. Pop. Biol. 38, 93–112 (1990).

    Article  Google Scholar 

  17. Molander, P. J. Conflict Resolut. 29, 611–618 (1985).

    Article  Google Scholar 

  18. Lindgren, K. in Artificial Life II (eds Farmer, D. et al.) (Proc. Santa Fe Inst. Stud., Addison-Welsey 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowak, M., Sigmund, K. Tit for tat in heterogeneous populations. Nature 355, 250–253 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing