Letter | Published:

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

Abstract

THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

References

  1. 1

    Bucher, K. & Fricke, J. Phys. Zeit 21, 237–244 (1980).

  2. 2

    Honda, K. & Fujishima, A. Nature 238, 37–39 (1972).

  3. 3

    Tufts, B. J. et al. Nature 326, 681–683 (1987).

  4. 4

    Gerischer, H. Electrochim. Acta 35, 1677 (1990).

  5. 5

    Licht, S., Hodes, G., Tenne, R. & Manassen, J. Nature 326, 863–864 (1987).

  6. 6

    Heller, A. Acc. chem. Res. 14, 154–162 (1981).

  7. 7

    Nozik, A. J. Phil. Trans. R. Soc. Lond. A295, 453–470 (1980).

  8. 8

    Tributsch, H. & Bennet, J. C. J. electroanal. Chem. 81, 97 (1977).

  9. 9

    Wrighton, M. S. Acc. chem. Res. 12, 303–310 (1979).

  10. 10

    Bard, A. J. Science 207, 139 (1980).

  11. 11

    Memming, R. Phil. Tech. Rev. 38, 160 (1979).

  12. 12

    Matsumura, M., Nomura, Y. & Tsubomura, H. Bull. chem. Soc. Japan 50, 2533 (1977).

  13. 13

    Alonso, N., Beley, V. M., Chariter, P. & Ern, V. Rev. Phys. Appl. 16, 5 (1981).

  14. 14

    Willig, F., Eichberger, R., Sundaresan, N. S. & Parkinson, B. A. J. Am. chem. Soc. 112, 2702–2707 (1990).

  15. 15

    Amadelli, R., Argazzi, R., Bignozzi, C. A. & Scandola, F. J. Am. chem. Soc. 112, 7099–7103 (1990).

  16. 16

    Nazeeruddin, M. K., Liska, P., Moser, J., Vlachopoulos, N. & Grätzel, M. Helv. chim. Acta 73, 1788–1803 (1990).

  17. 17

    Juris, A., Balzani, V., Barigletti, F., Campagna, S., Belzer, B. Coord. Chem. Rev. 84, 85 (1988).

  18. 18

    Anderson, M. A., Gieselmann, M. J. & Xu, Q. J. Membrane Sci. 392, 43 (1988).

  19. 19

    O'Regan, B., Moser, J., Anderson, M. & Grätzel, M. J. phys. Chem. 94, 8720–8726 (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.