A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary


LATE Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)—and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14C, 13C and 2H patterns for the late Younger Dryas and the entire Preboreal (10,100–9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13C and 2H tree-ring chronologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Becker, B. et al. Antiqua 11, 68 (1985).

    Google Scholar 

  2. 2

    Pilcher, J. R., Baillie, M. G. L., Schmidt, B. & Becker, B. Nature 312, 150–152 (1984).

    ADS  Article  Google Scholar 

  3. 3

    Becker, B. & Schmidt, B. PACT 29, (in the press).

  4. 4

    Stuiver, M. & Kra, R. (eds) Radiocarbon 28 2B, (1986).

  5. 5

    Stuiver, M., Brazunias, Th. F., Becker, B. & Kromer, B. Quat. Res. 35, 1–24 (1991).

    CAS  Article  Google Scholar 

  6. 6

    Stuiver, M. & Brazunias, Th. F. Nature 338, 405–408 (1989).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Hammer, C. U., Clausen, H. B. & Tauber, H. Radiocarbon 28 2A, 284–291 (1986).

    Article  Google Scholar 

  8. 8

    Stuiver, M. in The Late Cenocoic Glacial Ages (ed. Turekian, K. K.) 57–70 (Yale University Press, New Haven, 1971).

    Google Scholar 

  9. 9

    Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Nature 345, 405–410 (1990).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Epstein, S., Yapp, C. J. & Hall, J. H. Earth planet Sci. Lett. 30, 241–251 (1976).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Leavitt, St W. & Long, A. Global biochem. Cycles 2, 189–198 (1988).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Francey, R. J. & Farquhar, G. D. Nature 297, 28–31 (1982).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Leavitt, St W. & Long, A. Water Resource Bull. 25 341–347 (1989).

    Article  Google Scholar 

  14. 14

    Vogel, J. C. Sitzungssber. der Heidelberger Akademie der Wissenschaften, Math.-Nat. Klasse, Jg. 1980, 3. Abh. (Springer, Berlin, 1980).

    Google Scholar 

  15. 15

    Münnich, K. O. et al. in Turbulent Fluxes through the Sea Surface, Wave Dynamics and Prediction (eds Favre, A. & Hasselmann, K.) (Plenum, New York, 1978).

    Google Scholar 

  16. 16

    Stuiver, M. & Brazunias, T. F. Nature 327, 58–60 (1987).

    ADS  Article  Google Scholar 

  17. 17

    Yapp, C. J. & Epstein, S. Earth planet. Sci. Lett. 34, 333–350 (1977).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Shackleton, N. J. & Pisias, N. G. in The Carbon Cycle and Atmospheric C02: Natural Variations Archaen to Present (eds Sundquist, E. T. & Broecker, W. S.) Geophys. Monograph 32, 303–317 (1985).

    Google Scholar 

  19. 19

    Curry, W. B. & Crowly, T. J. Palaeooceanography 2, 489–517 (1987).

    ADS  Article  Google Scholar 

  20. 20

    Bard, E. et al. Nature 328, 791–794 (1987).

    ADS  Article  Google Scholar 

  21. 21

    Lotter, A. Diss. Botanicae 124 (Cramer, Berlin-Stuttgart, 1988).

    Google Scholar 

  22. 22

    Moser, H. et al. Palaeoclimates and Palaeowaters: A Collection of Environmental Isotope Studies (IAEA, Vienna, 1983).

    Google Scholar 

  23. 23

    Eicher, U. & Siegenthaler, U. Boreas 5, 109–117 (1976).

    Article  Google Scholar 

  24. 24

    Eicher, U., Siegenthaler, U. & Wegmüller, S. Quat. Res. 15, 160–170 (1981).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becker, B., Kromer, B. & Trimborn, P. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 353, 647–649 (1991). https://doi.org/10.1038/353647a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing