Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial orientation of molecules in strong electric fields and evidence for pendular states

Abstract

IN typical collisional or spectroscopic experiments, molecules rotate freely with random spatial orientations. The resulting isotropic averaging obscures or suppresses much stereodynamical information and has remained a recalcitrant problem. The only practical means for orienting a molecule itself, rather than just its axis of rotation, has been electric field focusing1,2. But this is applicable only to certain rotational states of symmetric top molecules (or equivalent) that exhibit a first-order Stark effect. Orientation of molecules other than symmetric tops has long been considered to be quite unfeasible3. Recently, however, it has been pointed out4,5 that by exploiting the extreme rotational cooling that can occur in supersonic molecular beams, substantial orientation of diatomic, linear or asymmetric top molecules should become possible at accessible field strengths. The anisotropy of the Stark effect allows molecules in the lowest few rotational states to be trapped in 'pendular states' and thereby confined to librate (oscillate about the field axis) over a limited angular range. Here we describe an experiment which demonstrates that oriented pendular states can be obtained for a diatomic molecule with modest field strengths. With anticipated improvements, this technique should become widely applicable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brooks, P. R. Science 193, 11–16 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Parker, D. H. & Bernstein, R. B. A. Rev. phys. Chem. 40, 561–595 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Bernstein, R. B., Herschbach, D. R. & Levine, R. D. J. phys. Chem. 91, 5365–5377 (1987).

    Article  CAS  Google Scholar 

  4. Loesch, H. J. & Remscheid, A. J. chem. Phys. 93, 4779–4790 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Friedrich, B. & Herschbach, D. R. Z. Phys. D18, 153–161 (1991).

    CAS  Google Scholar 

  6. Gandhi, S. R. & Bernstein, R. B. J. chem. Phys. 93, 4024–4032 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Harland, P. W., Carman, H. S., Phillips, L. F. & Brooks, P. R. J. chem. Phys. 93, 1089–1097 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Bulthuis, J., Milan, J. B., Janssen, M. H. M. & Stolte, S. J. chem. Phys. 94, 7181–7192 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Kaesdorf, S., Schönhense, G. & Heinzmann, U. Phys. Rev. Lett. 54, 885–887 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Macay, R. S., Curtiss, T. J. & Bernstein, R. B. J. chem. Phys. 92, 801–802 (1990).

    Article  ADS  Google Scholar 

  11. Pullman, D. P., Friedrich, B. & Herschbach, D. R. J. chem. Phys. 93, 3224–3236 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure Vol. IV, 341 (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  13. Cummings, F. E. & Klemperer, W. J. chem. Phys. 60, 2035–2039 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Coxon, J. A., Gordon, R. M. & Wickramaaratchi, M. A. J. molec. Spectrosc. 79, 363–379 (1980).

    Article  ADS  Google Scholar 

  15. Hansen, S. G., Thompson, J. D., Western, C. M. & Howard, B. J. Molec. Phys. 49, 1217–1229 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Johnson, J. R., Slotterback, T. J., Pratt, D. W., Janda, K. C. & Western, C. M. J. phys. Chem. 94, 5661–5664 (1990).

    Article  CAS  Google Scholar 

  17. Meyenn, K. Z. Phys. 231, 154–160 (1970).

    Article  ADS  Google Scholar 

  18. Kais, S. & Levine, R. D. J. phys. Chem. 91, 5462–5465 (1987).

    Article  CAS  Google Scholar 

  19. Friedrich, B., Pullman, D. P. & Herschbach, D. R. J. phys. Chem. 95 (1991).

    Article  CAS  Google Scholar 

  20. Hsu, D. S. Y., Weinstein, N. D. & Herschbach, D. R. Molec. Phys. 29, 257–278 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, B., Herschbach, D. Spatial orientation of molecules in strong electric fields and evidence for pendular states. Nature 353, 412–414 (1991). https://doi.org/10.1038/353412a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353412a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing