Abstract
TRAFFICKING pathways in malaria-infected erythrocytes are complex because the internal parasite is separated from the serum by the erythrocyte and parasitophorous vacuolar membranes1. Intraerythrocytic Plasmodium falciparum parasites can endocytose dextrans, protein A and an IgG2a antibody. Here we show that these macromolecules do not cross the erythrocyte or parasitophorous vacuolar membranes, but rather gain direct access to the aqueous space surrounding the parasite through a parasitophorous duct. Evidence for this structure includes visualization of membranes that are continuous between the parasitophorous vacuolar and erythrocyte membranes, and surface labelling of the parasite with fluorescent macromolecules under conditions that block endocytosis. The parasite can internalize by fluid-phase endocytosis macromolecules from the aqueous compartment surrounding it. Thus, surface antigens on trophozoites and schizonts should be considered as targets for antibody-directed parasiticidal agents.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Aikawa, M., Miller, L. H., Johnson, J. & Rabbege, J. J. Cell Biol. 77, 72–81 (1978).
- 2
Hsiao, L., Howard, R. J., Aikawa, M. & Taraschi, T. F. Biochem. J. 274, 121–132 (1991).
- 3
Hunter, J. A., Hurtley, S. M., Murray, M. & Taraschi, T. F. Biophys. J. 59, 442a (1991).
- 4
Kuismanen, E. & Saraste, J. Meth. Cell Biol. 32B, 257–273 (1989).
- 5
Grellier, P., Rigomier, D., Clavey, V., Fruchart, J.-C. & Schrevel, J. J. Cell Biol. 112, 267–277 (1991).
- 6
Swanson, J. A., Yirinec, B. D. & Silverstein, S. C. J. Cell Biol. 100, 851–859 (1985).
- 7
van der Schaft, P. H. et al. Biochim. biophys. Acta 901, 1–14 (1986).
- 8
Howard, R. J. et al. J. Cell Biol. 103, 1269–1277 (1986).
- 9
Howard, R. J. et al. J. Cell Biol. 104, 1269–1280 (1987).
- 10
Taylor, D. W. et al. Molec. Biochem. Parasitol. 25, 165–174 (1987).
- 11
Rodriguez, M. & Jungery, M. Nature 324, 388–391 (1986).
- 12
Elford, B. C., Haynes, J. D., Chulay, J. D. & Wilson, R. J. M. Molec. Biochem. Parasitol. 16, 43–60 (1985).
- 13
Jepsen, S. Scand. J. Immun. 18, 567–571 (1983).
- 14
Jensen, J. B., Boland, M. T. & Akood, M. A. Science 216, 1230–1233 (1982).
- 15
Green, T. J. et al. Am. J. Trop. Med. Hyg. 34, 24–30 (1985).
- 16
Trager, W. & Jensen, J. B. Science 193, 673–675 (1976).
- 17
Barnwell, J. W. Blood Cells 16, 379–395 (1990).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Pouvelle, B., Spiegel, R., Hsiao, L. et al. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature 353, 73–75 (1991). https://doi.org/10.1038/353073a0
Received:
Accepted:
Issue Date:
Further reading
-
Plug for the parasitophorous duct: a solution of two conundra
Malaria Journal (2020)
-
The parasitophorous vacuole of the blood-stage malaria parasite
Nature Reviews Microbiology (2020)
-
Human plasma plasminogen internalization route in Plasmodium falciparum-infected erythrocytes
Malaria Journal (2020)
-
Implications des pompes membranaires de Plasmodium falciparum dans le transport et la résistance aux antipaludiques
Revue Francophone des Laboratoires (2020)
-
The genetic Ca2+ sensor GCaMP3 reveals multiple Ca2+ stores differentially coupled to Ca2+ entry in the human malaria parasite Plasmodium falciparum
Journal of Biological Chemistry (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.