Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans

Abstract

THE glp-1 and lin-12 genes encode homologous transmembrane proteins that may act as receptors for cell interactions during development3,4. The glp-1 product is required for induction of germ-line proliferation and for embryogenesis3,5. By contrast, lin-12 mediates somatic cell interactions, including those between the precursor cells that form the vulval hypodermis (VPCs) 6. Here we analyse an unusual allele of glp-1, glp-1(q35), which displays a semidominant multivulva phenotype (Muv), as well as the typical recessive, loss-of-function Glp phenotypes (sterility and embryonic lethality) 3. We find that the effects of glp-l(q35) on VPC develop-ment mimic those of dominant lin-12mutations, even in the absence of lin-12 activity. The glp-l(q35) gene bears a nonsense mutation predicted to eliminate the 122 C-terminal amino acids, including a ProGluSerThr (PEST) sequence thought to destabilize proteins. We suggest that the carboxy terminus bears a negative regulatory domain which normally inactivates glp-1 in the VPCs. We propose that inappropriate glp-l(q35)activity can substitute for lin-12 to determine vulval fate, perhaps by driving the VPCs to proliferate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Austin, J. & Kimble, J. Cell 58, 565–571 (1989).

    Article  CAS  Google Scholar 

  2. Yochem, J. & Greenwald, I. Cell 58, 553–563 (1989).

    Article  CAS  Google Scholar 

  3. Austin, J. & Kimble, J. Cell 51, 589–599 (1987).

    Article  CAS  Google Scholar 

  4. Seydoux, G. & Greenwald, I. Cell 57, 1237–1245 (1989).

    Article  CAS  Google Scholar 

  5. Priess, J. R., Schnabel, H. & Schnabel, R. Cell 51, 610–611 (1987).

    Article  Google Scholar 

  6. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. Cell 34, 435–444 (1983).

    Article  CAS  Google Scholar 

  7. Horvitz, H. R. & Sternberg, P. W. Nature 351, 535–541 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Lambie, E. J. & Kimble, J. Development 112, 231–240 (1991).

    CAS  PubMed  Google Scholar 

  9. Seydoux, G., Schedl, T. & Greenwald, I. Cell 51, 939–951 (1990).

    Article  Google Scholar 

  10. Hodgkin, J., Papp, A., Pulak, R., Ambros, V. & Anderson, P. Genetics 123, 301–313 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sternberg, P. W. & Horvitz, H. R. Cell 58, 679–693 (1989).

    Article  CAS  Google Scholar 

  12. Kimble, J. Devl Biol. 87, 286–300 (1981).

    Article  CAS  Google Scholar 

  13. Seydoux, G. thesis, Univ. Princeton (1991).

  14. Rogers, S., Wells, R. & Rechsteiner, M. Science 234, 364–368 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Kellerman, K. A., Mattson, D. M. & Duncan, I. Genes Dev. 4, 1936–1950 (1990).

    Article  CAS  Google Scholar 

  16. Losson, R. & Lacroute, F. Proc. natn. Acad. Sci. U.S.A. 76, 5134–5137 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Stanley, E. R., Guilbert, L. J., Tushinski, R. J. & Bartelmez, S. H. J. Cell Biochem. 21, 151–159 (1983).

    Article  CAS  Google Scholar 

  18. Sulston, J. & Horvitz, H. R. Devl Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  19. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sulston, J. E. & White, J. G. Devl Biol. 78, 577–597 (1980).

    Article  CAS  Google Scholar 

  21. Herman, R. K. & Hedgecock, E. M. Nature 348, 169–171 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Sternberg, P. W. & Horvitz, H. R. Cell 44, 761–772 (1986).

    Article  CAS  Google Scholar 

  23. Sternberg, P. W. Nature 335, 551–554 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Greenwald, I. Cell 43, 583–590 (1985).

    Article  CAS  Google Scholar 

  25. Yochem, J., Weston, K. & Greenwald, I. Nature 335, 547–550 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Greenwald, I. & Seydoux, G. Nature 346, 197–199 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Myers, R. M., Larin, Z. & Maniatis, T. Science 230, 1242–1246 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mango, S., Maine, E. & Kimble, J. Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans. Nature 352, 811–815 (1991). https://doi.org/10.1038/352811a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352811a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing