Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early outgassing of Mars supported by differential water solubility of iodine and xenon

Abstract

THE martian atmosphere has a high 129Xe/132Xe ratio compared with any on Earth and most meteorites. The 129Xe/132Xe ratio in the martian atmosphere is also high relative to the martian mantle1. In contrast, Earth's upper mantle has a higher 129Xe/132Xe ratio than its atmosphere2. As 129Xe is the daughter product of the extinct nuclide 129I, a means of fractionating iodine from xenon early in martian history appears necessary to account for the 129Xe/132 ratios of its known reservoirs. Crystal/melt partitioning will fractionate iodine from xenon in the right sense, but the fractionation is probably inadequate in magnitude; differences in the silicate melt solubilities of iodine and xenon would cause fractionation in the wrong direction. Here we present a model to account for the martian xenon data which relies on the very different solubilities of the two elements in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of 129Xe produced from 129I decay in the crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ott, U. & Begemann, F. Nature, 317, 509–512 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Allegre, C. J., Staudacher, T. & Sarda, P. Earth planet. Sci. Lett. 81, 127–150 (1988).

    Article  ADS  Google Scholar 

  3. Swindle, T. D., Caffee, M. W., Hohenberg, C. M. & Taylor, S. R. in Origin of the Moon, 331–357 (1986).

    Google Scholar 

  4. McSween, H. Y. Jr Rev. Geophys. 23, 391–416 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Owen, T. et al. J. geophys. Res. 82, 4635–4639 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Anders, E. & Owen, T. Science 198, 453–465 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Dreibus, G. & Wänke, H. Icarus 71, 225–240 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Musselwhite, D. S., Drake, M. J. & Swindle, T. D. Abstr. 21st Lunar Planet. Sci. Conf., 833–834 (Lunar and Planetary Institute, Houston, 1990).

    Google Scholar 

  9. Hiyagon, H. & Ozima, M. Geochim. cosmochim. Acta 50, 2045–2057 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Broadhurst, C. L. thesis, Univ. Arizona (1989).

  11. Chen, J. H. & Wasserburg, G. J. Geochim. cosmochim. Acta 50, 955–969 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Taylor, G. J. J. geophys. Res. (submitted).

  13. Carr, M. H. Nature 326, 30–35 (1987).

    Article  ADS  Google Scholar 

  14. Matsui, T. & Abe, Y. Nature 322, 526–528 (1986).

    Article  ADS  Google Scholar 

  15. Chemical Oceanography (eds Riley, J. P. & Skinner, G.) (Academic, London, 1975).

  16. Melosh, H. J. & Vickery, A. Nature 338, 487–489 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Swindle, T. D., Caffee, M. W. & Hohenberg, C. M. Geochim. cosmochim. Acta 50, 1001–1015 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Icarus 69, 532–549 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Lange's Handbook of Chemistry (ed. Dean, J. A.) (McGraw-Hill, New York, 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musselwhite, D., Drake, M. & Swindle, T. Early outgassing of Mars supported by differential water solubility of iodine and xenon. Nature 352, 697–699 (1991). https://doi.org/10.1038/352697a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352697a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing