Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds

Abstract

COMPOUND-specific isotope analysis by gas chromatography combined with isotope-ratio mass spectrometry (GC-IRMS)1,2 provides a new tool with which to study the carbon cycle at the molecular scale3. Previous studies2,4 using this technique have been concerned with oceanic systems. Here we demonstrate that the potential for elucidating terrestrial sedimentary processes is equally important. By comparing the carbon isotope ratios (δ13C) of individual n-alkanes from the leaves of lakeside trees with those from the lake sediments, we are able to discriminate between the diverse sources of the sedimentary carbon. The leaf-wax n-alkanes show a large inter-species δ13C variation of -30.1 to -38.7‰, which may be the result of genetic differences in plant adaptation and physiology. Values of-30.1 to -35.9‰> were obtained for the corresponding n-alkanes extracted from the lake sediments, indicating that they derive from a mixed input of deciduous leaf waxes. Shorter-chain lipids in the sediments had δ13C values of -20 to -22‰o, implying that these originate from a different (probably algal) source. Information of this sort goes beyond that which can be deduced from bulk isotope or biomarker analyses alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matthews, D. E. & Hayes, J. M. Analyt. Chem. 50, 1465–1473 (1978).

    Article  CAS  Google Scholar 

  2. Freeman, K. H., Hayes, J. M., Trendel, J.-M. & Albrecht, P. Nature 353, 254–256 (1989).

    Google Scholar 

  3. Griffiths, H. Funct. Ecol. 5, 254–269 (1991).

    Article  Google Scholar 

  4. Hayes, J. M., Freeman, K. H., Popp, B. N. & Hoham, C. H. Org. Geochem. 16, 1115–1128 (1989).

    Article  Google Scholar 

  5. O'Leary, M. H. Phytochem. 20, 553–567 (1981).

    Article  CAS  Google Scholar 

  6. Farquhar, G. D., O'Leary, M. H. & Berry, J. A. Aust. J. Plant Physiol. 9, 121–137 (1982).

    CAS  Google Scholar 

  7. Farquhar, G. D., Ehleringer, J. R., Hubick, K. T. Ann Rev. Plant Physiol. molec. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  8. Brugnoli, E., Hubick, K. T., von Caemmerer, S., Wong, S. C. & Farquhar, G. D. Plant Physiol. 88, 1418–1424 (1988).

    Article  CAS  Google Scholar 

  9. Zimmermann, J. K. & Ehleringer, J. R. Oecologia 83, 247–249 (1990).

    Article  ADS  Google Scholar 

  10. Vitousek, P. M., Field, C. B. & Marson, P. A. Oecologia 84, 362–370 (1990).

    Article  ADS  Google Scholar 

  11. Stuiver, M. Quat Res. 5, 251–262 (1975).

    Article  CAS  Google Scholar 

  12. Macko, S. A., Helleur, R., Hartley, G. & Jackman, P. Org. Geochem. 16, 1129–1137 (1989).

    Article  Google Scholar 

  13. Benner, R., Fogel, M. L., Sprague, E. K. & Hodson, R. E. Nature 329, 708–710 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Farr, K. M. et al. Hydrogeology (in the press).

  15. Rieley, G., Collier, R. J., Jones, D. M. & Eglinton, G. Org. Geochem. (in the press).

  16. Troughton, J. H. in Encyclopaedia of Plant Physiology, New Series, Vol. 6 (eds Gibbs, M. & Latzo, E.) 140–149 (Springer, Berlin, 1979).

    Google Scholar 

  17. Jones, D. M., Carter, J., Eglinton, G., Jumeau, E. J. & Fenwick, C. S. Biomed. Mass Spectrom. (in the press).

  18. Smedley, M. P. et al. Oecologia 85, 314–320 (1991).

    Article  ADS  Google Scholar 

  19. Koerner, C., Farquhar, G. D. & Roksandic, Z. Oecologia 74, 623–632 (1988).

    Article  ADS  Google Scholar 

  20. Condon, A. G., Farquhar, G. D. & Richards, R. A. Aust. J. Plant Physiol. 17, 9–22 (1990).

    Google Scholar 

  21. van der Merwe, N. J. & Medina, E. Geochim. cosmochim. Acta 53, 1091–1094 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Brugnoli, E., Hubick, K. T., von Caemmerer, S., Wong, S. C. & Farquhar, G. D. Plant Physiol. 88, 1418–1424 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieley, G., Collier, R., Jones, D. et al. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352, 425–427 (1991). https://doi.org/10.1038/352425a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352425a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing