Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Was the loss of the D helix in α globin a functionally neutral mutation?

Abstract

PROTEINS in the globin family are found in a variety of species from bacteria to man1, 3. From the many globin sequences known, evolutionary trees have been constructed showing that α and β globins diverged from a common ancestor between 425 and 500 million years ago, after vertebrate species had appeared and roughly when sharks and bony vertebrates diverged4–6. The αand β globins assemble to form tetrameric haemoglobin,α2/ β2, which can switch between quaternary states having high and low oxygen affinity7. This allows the protein to bind oxygen cooperatively and therefore efficiently transport oxygen from the lungs to respiring tissues. The αand β globins have closely related tertiary structures, being α-helical proteins with similar haem-binding sites. Most globins consist of eight helices, designated A to H from the N terminus, connected by short nonhelical segments, but all known vertebrate α globins lack a D helix. Because the loss of this helix by α globin occurred shortly before tetrameric haemoglobin appeared, it might be a functionally important mutation required for a tetramer assembly or allostery. We have now tested this idea by engineering human haemoglobins containing β subunits without a D helix and α subunits with a D helix. Both of these mutations have little effect on the oxygen-binding properties of the molecule. Thus it is possible that deletion of the D helix in the α subunit was caused by a neutral mutation8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Braunitzer, G., Gehring-Müller, R., Hilschmann, N. & Hilse, K. Hoppe-Seyler's Z physiol. Chem. 325, 283–286 (1961).

    Article  CAS  Google Scholar 

  2. Dayhoff, M. O. Atlas of Protein Sequence and Structure Vol. 5 and Suppl. 1–3 (National Biomedical Research Foundation, Washington DC, 1972).

    Google Scholar 

  3. Kleinschmidt, T. & Sgouros, J. Hoppe-Seyler's Z. biol. Chem. 368, 579–615 (1987).

    Article  CAS  Google Scholar 

  4. Perutz, M. F. Molec. Biol. Evol. 1, 1–144 (1983).

    CAS  PubMed  Google Scholar 

  5. Dickerson, R. E. & Geis, I. Hemoglobin: Structure, Evolution and Pathology (Benjamin Cummings, Menlo Park, California, 1983).

    Google Scholar 

  6. Lesk, A. M. & Chothia, C. J. molec. Biol. 136, 225–270 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Fermi, G. & Perutz, M. F. Atlas of Molecular Structure in Biology 2: Hemoglobin & Myoglobin (Clarendon Press, Oxford, 1981).

    Google Scholar 

  8. Kimura, M. Sci. Am. 241, 94–104 (1979).

    Article  Google Scholar 

  9. Arutyunyan, E. G., Kuranova, I. P., Vainstein, B. K. & Steigemann, W. Soviet Phys. Crystallogr. 25, 43–52 (1980).

    Google Scholar 

  10. Huber, R., Epp, O., Steigemann, W. & Formanek, H. Eur. J. Biochem. 19, 42–50 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Love, W. A. & Karle, J. J. molec. Biol. 74, 331–361 (1973).

    Article  PubMed  Google Scholar 

  12. Padlan, E. & Love, W. E. J. biol. Chem. 249, 4067–4078 (1974).

    CAS  PubMed  Google Scholar 

  13. Royer, W. E., Hendrickson, W. A. & Chiancone, E. J. biol. Chem. 264, 21052–21061 (1989).

    CAS  PubMed  Google Scholar 

  14. Kendrew, J. C. et al. Nature 185, 422–427 (1960).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Dodson, G., Hubbard, R. E., Oldfield, T.j., Smerdon, S. J. & Willkinson, A. J. Protein Engng. 2, 233–237 (1988).

    Article  CAS  Google Scholar 

  16. Wakabayashi, S., Matsubara, H. & Webster, D. A. Nature 322, 481–483 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hoffman, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 87, 8521–8525 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Aschauer, H., Weber, R. E. & Braunitzer, G. Hoppe-Seyler's Z. biol. Chem. 366, 589–599 (1985).

    Article  CAS  Google Scholar 

  19. International Hemoglobin Information Center Hemoglobin 9, 229–298 (1985).

  20. Perutz, M. F. Mechanisms of Cooperativity and Allosteric Regulations in Proteins (Cambridge University Press, 1990).

    Google Scholar 

  21. Nagai, K., Perutz, M. F. & Poyart, C. Proc. natn. Acad. Sci. U.S.A. 82, 7252–7255 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Imai, K. Meth. Enzym. 76, 438–449 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komiyama, N., Shih, DB., Looker, D. et al. Was the loss of the D helix in α globin a functionally neutral mutation?. Nature 352, 349–351 (1991). https://doi.org/10.1038/352349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing