Abstract
HIGH levels of speech recognition have been achieved with a new sound processing strategy for multielectrode cochlear implants. A cochlear implant system consists of one or more implanted elec-trodes for direct electrical activation of the auditory nerve, an external speech processor that transforms a microphone input into stimuli for each electrode, and a transcutaneous (rf-link) or per-cutaneous (direct) connection between the processor and the elec-trodes. We report here the comparison of the new strategy and a standard clinical processor. The standard compressed analogue (CA) processor1,2 presented analogue waveforms simultaneously to all electrodes, whereas the new continuous interleaved sampling (CIS) strategy presented brief pulses to each electrode in a nonover-lapping sequence. Seven experienced implant users, selected for their excellent performance with the CA processor, participated as subjects. The new strategy produced large improvements in the scores of speech reception tests for all subjects. These results have important implications for the treatment of deafness and for minimal representations of speech at the auditory periphery.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves
Nature Biomedical Engineering Open Access 31 March 2022
-
Modulation Depth Discrimination by Cochlear Implant Users
Journal of the Association for Research in Otolaryngology Open Access 26 January 2022
-
Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update
Journal of the Association for Research in Otolaryngology Open Access 25 August 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Eddington, D. K. J. acoust. Soc. Am. 68, 885–891 (1980).
Eddington, D. K. Ann. N. Y. Acad. Sci. 405, 241–258 (1983).
Pfingst, B. E. Arch. Otolaryngol. 110, 140–144 (1984).
Shannon, R. V. Hear. Res. 11, 157–189 (1983).
Wilson, B. S., Finley, C. C. & Lawson, D. T. in Cochlear Implants: Models of the Electrically Stimulated Ear (eds Miller, J. M. & Spelman, F. A.) 339–376 (Springer, New York, 1990).
Eddington, D. K., Dobelle, W. H., Brackmann, D. E., Mladejovsky, M. G. & Parkin, J. L. Ann. Otol. Rhinol. Lar. 87, suppl. 53, 1–39 (1978).
Müller, C. G. Ann. N. Y. Acad. Sci. 405, 412–420 (1983).
Simmons, F. B. Arch. Otolaryngol. 84, 2–54 (1966).
Tong, Y. C., Blarney, P. J., Dowell, R. C. & Clark, G. M. J. acoust. Soc. Am. 74, 73–80 (1983).
White, M. W., Merzenich, M. M. & Gardi, J. N. Arch. Otolaryngol. 110, 493–501 (1984).
Wilson, B. S., Finley, C. C., Lawson, D. T. & Wolford, R. D. Proc. I.E.E.E. 76, 1143–1154 (1988).
Wilson, B. S., Lawson, D. T., Finley, C. C. & Wolford, R. D. Am. J. Otol. 12, suppl. 1, 56–61 (1991).
Clark, G. M. et al. Adv. Otol.-Rhinol. Lar. 38, 1–189 (1987).
Dorman, M. F., Hannley, M. T., Dankowski, K., Smith, L. & McCandless, G. Ear Hear. 10, 44–49 (1989).
Gantz, B. J. et al. Laryngoscope 98, 1100–1106 (1988).
Schindler, R. A. & Kessler, D. K. Am. J. Otol. 8, 247–255 (1987).
Tyler, R. S., Moore, B. C. J. & Kuk, F. K. J. Speech. Hear. Res. 32, 887–911 (1989).
Owens, E., Kessler, D. K., Raggio, M. W. & Schubert, E. D. Ear Hear. 6, 280–287 (1985).
De Filippo, C. L. & Scott, B. L. J. acoust. Soc. Am. 63, 1186–1192 (1978).
Owens, E. & Raggio, M. J. Speech Hear. Disorders 52, 120–128 (1987).
Robbins, A. M., Osberger, M. J., Miyamoto, R. T., Kienle, M. L. & Myres, W. A. J. Speech Hear. Res. 28, 565–578 (1985).
Sparks, D. W., Ardell, L. A., Bourgeois, M., Wiedmer, B. & Kuhl, P. K. J. acoust. Soc. Am. 65, 810–815 (1979).
Bess, F. H. & Townsend, T. H. J. Speech Hear. Disorders 42, 232–237 (1977).
Dubno, J. R. & Dirks, D. D. J. Speech Hear. Res. 25, 135–141 (1982).
Dowell, R. C., Seligman, P. M., Blamey, P. J. & Clark, G. M. Ann. Otol. Rhinol. Lar. 96, suppl. 128, 132–134 (1987).
Tyler, R. S., Preece, J. P., Lansing, C. R., Otto, S. R. & Gantz, B. J. J. Speech Hear. Res. 29, 282–287 (1986).
Flanagan, J. L. Speech Analysis, Synthesis and Perception (Springer, Berlin, 1972).
Hill, F. J., McRae, L. P. & McClellan, R. P. J. acoust. Soc. Am. 44, 13–18 (1968).
Remez, R. E., Rubin, P. E., Pisoni, D. B. & Carrell, T. D. Science 212, 947–950 (1981).
Rosen, S. in Cochlear Implant: Acquisitions and Controversies (eds Fraysse, B. & Cochard, N.) 3–26 (Impasse La Caussade, Toulouse, 1989).
Rosen, S. M., Fourcin, A. J. & Moore, B. C. J. Nature 291, 150–152 (1981).
Van Tasell, D. J., Soli, S. D., Kirby, V. M. & Widen, G. P. J. acoust. Soc. Am. 82, 1152–1161 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wilson, B., Finley, C., Lawson, D. et al. Better speech recognition with cochlear implants. Nature 352, 236–238 (1991). https://doi.org/10.1038/352236a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/352236a0
Further reading
-
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves
Nature Biomedical Engineering (2022)
-
Minimal-invasive enhancement of auditory perception by terahertz wave modulation
Nano Research (2022)
-
The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients?
European Archives of Oto-Rhino-Laryngology (2022)
-
Modulation Depth Discrimination by Cochlear Implant Users
Journal of the Association for Research in Otolaryngology (2022)
-
Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update
Journal of the Association for Research in Otolaryngology (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.