Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lower-mantle structure from ScS–S differential travel times

Abstract

KNOWLEDGE of the spectrum of structure in the lower mantle is crucial to our understanding of the dynamical evolution of the Earth and, in principle, can be inferred from the analysis of global seismic data sets. The long-wavelength compressional velocity structure has usually been constrained through tomographic inver-sion of the ISC catalogue of P-wave travel times1–3, whereas shear velocity has been inferred from waveform modelling of long-period shear waves4–6. The models that have been produced are similar in only the largest-scale features7 and explain little of the variance of the raw data used in their construction. Thus, there is a legitimate concern that the current generation of global-scale models give only a crude approximation to the largest-scale structure and that there may be significant aliasing of short-wavelength heterogeneity. Here we use ScS – S differential travel times to demonstrate that the three-dimensional structure of the lower mantle is indeed dominated by continental-scale features. Particularly convincing is the fact that the features are apparent in the raw data and are not the product of a complicated modelling procedure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dziewonski, A. M. J. geophys. Res. 89, 5929–5952 (1984).

    Article  ADS  Google Scholar 

  2. Clayton, R. W. & Comer, R. P. EOS Trans. Am. geophys. Un. 64, 776 (1983).

    Google Scholar 

  3. Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Phys. Earth planet. Inter. 59, 294–328 (1990).

    Article  ADS  Google Scholar 

  4. Dziewonski, A. M. & Woodhouse, J. H. Science 236, 37–48 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Woodhouse, J. H. & Dziewonski, A. M. Phil. Trans. R. Soc. A328, 291–308 (1989).

    Article  ADS  Google Scholar 

  6. Tanimoto, T. Geophys. J. Int. 100, 327–336 (1990).

    Article  ADS  Google Scholar 

  7. Hager, B. H. & Clayton, R. W. in Mantle Convection (ed. Peltier, W. R.) 657–763 (Gordon & Breach, New York, 1989).

    Google Scholar 

  8. Woodward, R. L. & Masters, G. J. geophys. Res. 96, 6351–6377 (1991).

    Article  ADS  Google Scholar 

  9. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  10. Dziewonski, A. M. & Gilbert, F. Geophys. J. R. astr. Soc. 44, 7–17 (1976).

    Article  ADS  Google Scholar 

  11. Parker, R. L. Geophysical Inverse Theory (Princeton University Press, 1991).

    MATH  Google Scholar 

  12. Sure, L., Parker, R. L. & Backus, G. E. Phys. Earth planet. Inter. 28, 215–229 (1982).

    Article  ADS  Google Scholar 

  13. Kleiner, B. & Graedel, T. E. Rev. Geophys. Space Phys. 18, 699–717 (1980).

    Article  ADS  Google Scholar 

  14. Woodhouse, J. H. & Dziewonski, A. M. J. geophys. Res. 89, 5953–5986 (1984).

    Article  ADS  Google Scholar 

  15. Morelli, A. & Dziewonski, A. M. Nature 325, 678–683 (1987).

    Article  ADS  Google Scholar 

  16. Jordan, T. H. & Lynn, W. S. J. geophys. Res. 79, 2679–2685 (1974).

    Article  ADS  Google Scholar 

  17. Lay, T. Geophys. J. R. astr. Soc. 72, 483–516 (1983).

    Article  ADS  Google Scholar 

  18. Grand, S. P. J. geophys. Res. 92, 14065–14090 (1987).

    Article  ADS  Google Scholar 

  19. Lavely, E. M., Forsyth, D. W. & Friedemann, P. Geophys. Res. Lett. 13, 1505–1508 (1986).

    Article  ADS  Google Scholar 

  20. Gudmundsson, O., Davis, J. H. & Clayton, R. W. Geophys. J. Int. 102, 25–43 (1990).

    Article  ADS  Google Scholar 

  21. Giardini, D., Li, X.-D. & Woodhouse, J. H. Nature 325, 405–411 (1987).

    Article  ADS  Google Scholar 

  22. Giardini, D., Li, X.-D. & Woodhouse, J. H. J. geophys. Res. 93, 13716–13742 (1988).

    Article  ADS  Google Scholar 

  23. Ritzwoller, M., Masters, G. & Gilbert, F. J. geophys. Res. 93, 6369–6396 (1988).

    Article  ADS  Google Scholar 

  24. Garnero, E., Heimberger, D. & Engen, G. Geophys. Res. Lett. 15, 609–612 (1988).

    Article  ADS  Google Scholar 

  25. Wysession, M. E. & Okal, E. A. in Structure and Dynamics of the Earth's Deep Interior. AGU Monograph 46 55–63 (American Geophysical Union, 1988).

    Google Scholar 

  26. Young, C. J. & Lay, T. Ann. Rev. Earth planet. Sci. 15, 25–46 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Lay, T. EOS Trans. Am. geophys. Un. 70, 49–59 (1989).

    Article  ADS  Google Scholar 

  28. Jordan, T. H. Proc. Natl Acad. Sci. USA 76, 4192–4200 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Sipkin, S. A. & Jordan, T. H. J. geophys. Res. 85, 853–861 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodward, R., Masters, G. Lower-mantle structure from ScS–S differential travel times. Nature 352, 231–233 (1991). https://doi.org/10.1038/352231a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352231a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing