Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of cosmogenic 35S to determine the rates of removal of atmospheric SO2

Abstract

GASEOUS sulphur dioxide supplied to the atmosphere is removed principally by three processes: direct scavenging in precipitation, oxidation to aerosol sulphate with subsequent deposition by vertical and horizontal precipitation, and 'dry' deposition, primarily on the surface of vegetation. The rates of these removal processes, which vary with environmental conditions, must be known in order to understand the fate of SO2 and the concentration and distribu-tion of aerosol sulphate1–3. The latter is thought to play a part in the heat balance of the lower troposphere4, and is thus relevant to the issue of global warming. Approaches to this problem using field observations5,6 have not given consistent or uncontested results. We report here the use of cosmogenic 35S (half-life 87.2 days) as a way of determining the time constants for oxidation, in-cloud scavenging and aerosol deposition. Our method involves determining 35S levels in gaseous SO2 , aerosol sulphate and precipitation. If these seasonally and regionally variable time constants can be applied to terrestrially produced SO2, 35S measurements could provide an independent method for studying the fate of SO2 in the atmosphere as a function of time and place.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Calvert, J. G. et al. Nature 317, 27–35 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Sakugawa, H. & Kaplan, I. R. J. geophys. Res. 94, 12957–12973 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Chatfield, R. B. et al. in The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (eds Galloway, J. N. et al.) 83–104 (Reidel, New York, 1985).

    Book  Google Scholar 

  4. Charlson, R. J., Langner, J. & Rodhe, H. Nature 348, 22 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Alkezweeny, A. J. & Powell, D. C. Atmos. Envir. 11, 179–182 (1977).

    Article  CAS  Google Scholar 

  6. Forrest, J., Schwartz, S. E. & Newman, L. Atmos. Envir. 13, 157–167 (1979).

    Article  CAS  Google Scholar 

  7. Goel, P. S. Nature 178, 1458–1459 (1956).

    Article  ADS  CAS  Google Scholar 

  8. Lal, D., Rama & Zutshi, P. K. Tellus 65, 669–674 (1960).

    Google Scholar 

  9. Lal, D., Nijampurkar, V. N., Rajagopalan, G. & Somayajulu, B. L. K. Proc. Indian Acad. Sci. A88, 29–40 (1979).

    Article  Google Scholar 

  10. Junkermann, W. & Roedel, W. Atmos. Envir. 19, 1206–1207 (1985).

    Article  CAS  Google Scholar 

  11. Calvert, J. G., Chatfield, R. B., Delany, A. C. & Martel, E. A. Atmos. Envir. 19, 1205–1206 (1985).

    Article  CAS  Google Scholar 

  12. Forrest, J., Kline, J. H. & Newman, L. Atmos. Envir. 7, 561–573 (1973).

    Article  CAS  Google Scholar 

  13. Electric Power Research Institute The Sulfate Regional Experiment (SURE): Rep. No. 1–3 (Palo Alto, California, 1983).

  14. Turekian, K. K., Benninger, L. K. & Dion, E. P. J. geophys. Res. 88, 5411–5415 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Lal, D. & Peters, B. Handbuch Phys. Vol. 46 (Springer, Berlin, 1967).

    Google Scholar 

  16. Lal, D. in Earth Science and Meteoritics (eds Geiss, J. & Goldberg, E. D.) 115–142 (North-Holland, Amsterdam, 1963).

    Google Scholar 

  17. Graustein, W. C. & Turekian, K. K. J. geophys. Res. 91, 14355–14366 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Calvert, J. G., Su, F., Bottenheim, J. W. & Strausz, O. P. Atmos. Envir. 12, 197–226 (1978).

    Article  CAS  Google Scholar 

  19. Junkermann, W. & Roedel, W. Atmos. Envir. 17, 2549–2554 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, N., Turekian, K. Use of cosmogenic 35S to determine the rates of removal of atmospheric SO2. Nature 352, 226–228 (1991). https://doi.org/10.1038/352226a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352226a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing