Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential regulation of rasGAP and neurofibromatosis gene product activities

Abstract

THE ras-encoded p21ras proteins bind GTP very tightly, but catalyse hydrolysis to GDP very slowly1. In humans, two genes encode proteins that stimulate this GTPase activity (GAP, or GTPase-activating proteins)2, one of relative molecular mass 120,000, referred to as p120-GAP, and another NF1-GAP, which is encoded by the neurofibromatosis type-1 gene3–5. Both GAPs are widely expressed in mammalian tissues6,7. Here we show that although they will both bind oncogenic mutants of p21ras, neither will stimulate their GTPase activity. NF1-GAP binds to the p21ras proteins up to 300 times more efficiently than p120-GAP. The two GAPs are inhibited to different extents by certain lipids: micromolar concentrations of arachidonate, phosphatidate and phosphatidyIinositol-4,5-bisphosphate affect only NF1-GAP. This inhibition does not compete with p21ras, and lipid-inactivated NF1-G AP can still bind p21ras. We used the detergent dodecyl maltoside, which inhibits only NF1-GAP, to distinguish between the two activities in cell extracts and found both types present together in several mammalian cell lines. In contrast, GAP activity in extracts of Xenopus oocytes was not affected by dodecyl maltoside. By these criteria, the mammalian cells contain both GAP activities and the oocytes have only p120-like GAP activity. These results indicate that more than one GAP regulates p21ras in the same cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbacid, M. A. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  2. McCormick, F. Oncogene 5, 1281–1283 (1990).

    CAS  PubMed  Google Scholar 

  3. Martin, G. A. et al. Cell 63, 843–849 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, G. et al. Cell 63, 835–841 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Ballester, R. et al. Cell 63, 851–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Trahey, M. et al. Science 242, 1697–1700 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Buchberg, A. M., Cleveland, L. S., Jenkins, N. A. & Copeland, N. G. Nature 347, 291–294 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Trahey, M. & McCormick, F. Science 238, 542–545 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J. & McCormick, F. Science 240, 518–521 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Calés, C. Hancock, J. F., Marshall, C. J. & Hall, A. Nature 332, 548–551 (1988).

    Article  ADS  PubMed  Google Scholar 

  11. Vogel, U. S. et al. Nature 335, 90–93 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yatani, A. et al. Cell 61, 769–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Tsai, M.-H., Yu, C.-L., Wei, F. S. & Stacey, D. W. Science 243, 522–526 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Tsai, M.-H., Hall, A. & Stacey, D. W. Molec. cell. Biol. 9, 5260–5264 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, C.-L., Tsai, M.-H. & Stacey, D. W. Molec. cell. Biol. 10, 6683–6689 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Downward, J., Graves, J. D., Warne, P. H., Rayter, S. & Cantrell, D. A. Nature 346, 719–723 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Goldschmidt-Clermont, P. J., Machesky, L. M., Baldassare, J. J. & Pollard, T. D. Science 247, 1575–1578 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Birchmeier, C., Broek, D. & Wigler, M. Cell 43, 615–621 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka, K. et al. Molec. cell. Biol. 10, 4303–4313 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka, K., Lin, B. K., Wood, D. R. & Tamanoi, F. Proc. natn. Acad. Sci. U.S.A. 88, 468–472 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Zhang, K. et al. Nature 346, 754–756 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Shacter, E. Analyt. Biochem. 138, 416–420 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Furth, M. E., Davis, L. J., Fleurdelys, B. & Scolnick, E. M. J. Virol. 43, 294–304 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollag, G., McCormick, F. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351, 576–579 (1991). https://doi.org/10.1038/351576a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351576a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing