Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-chromosome inactivation may explain the difference in viability of XO humans and mice

Abstract

ONLY about 1% of human XO conceptuses survive to birth and these usually have the characteristics of Turner's syndrome, with a complex and variable phenotype including short stature, gonadal dysgenesis and anatomical defects1. Both the embryonic lethality and Turner's syndrome are thought to be due to monosomy for a gene or genes common to the X and Y chromosomes2. These genes would be expected to be expressed in females from both active and inactive X chromosomes to ensure correct dosage of gene product. Two genes with these properties are ZFX and RPS4X, both of which have been proposed to play a role in Turner's syndrome3,4. In contrast to humans, mice that are XO are viable with no prenatal lethality (P. Burgoyne, personal communication) and are anatomically normal and fertile. We have devised a system to analyse whether specific genes on the mouse X chromosome are inactivated, and demonstrate that both Zfx and Rps4X undergo normal X-inactivation in mice. Thus the relative viability of XO mice compared to XO humans may be explained by differences between the two species in the way that dosage compensation of specific genes is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turner, H. H. Endocrinology 23, 566–574 (1938).

    Article  Google Scholar 

  2. Ferguson-Smith, M. A. J. med. Genet. 2, 142–155 (1965).

    Article  CAS  Google Scholar 

  3. Burgoyne, P. Nature 342, 860–862 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Fisher E. M. C. et al. Cell 63, 1205–1218 (1990).

    Article  CAS  Google Scholar 

  5. Lyon, M. F., Searle, A. G., Ford, C. E. & Ohno, S. A. Cytogenetics 3, 306–323 (1964).

    Article  CAS  Google Scholar 

  6. Bonhomme, F. & Guenet, J.-L. in Genetic Variants and Strains of the Laboratory Mouse 2nd edn (eds Lyon, M. & Searle, A. G.) 649–662. (Oxford University Press, 1989).

    Google Scholar 

  7. McMahon, A. & Monk, M. Genet. Res. 41, 69–83 (1982).

    Article  Google Scholar 

  8. Rastan, S. J. Embryol. exp. Morph. 78, 1–22 (1983).

    CAS  PubMed  Google Scholar 

  9. Cattanach, B. M. & Johnston, P. Hereditas 94, 5 (1981).

    Google Scholar 

  10. Johnston, P. G. & Cattanach, B. M. Genet. Res. 37, 151–160 (1981).

    Article  CAS  Google Scholar 

  11. Rastan, S. Genet. Res. 40, 139–147 (1982).

    Article  CAS  Google Scholar 

  12. Schneider-Gadicke, A., Beer-Romero, P., Brown, L. G., Nussbaum, R. & Page, D. C. Cell 57, 1247–1258 (1989).

    Article  CAS  Google Scholar 

  13. Brown, C. J. & Willard, H. F. Am. J. hum. Genet. 45, 592–598 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Page, D. C. et al. Cell 51, 1091–1104 (1987).

    Article  CAS  Google Scholar 

  15. Palmer, M. S. et al. Nature 342, 830–836 (1989).

    Article  Google Scholar 

  16. Koopman, P., Ashworth, A. & Lovell-Badge, R. Trends Genet. 7, 132–136 (1991).

    Article  CAS  Google Scholar 

  17. Koopman, P. et al. Nature 342, 940–942 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Ashworth, A., Skene, B., Swift, S. & Lovell-Badge, R. H. EMB0 J. 9, 1529–1534 (1990).

    Article  CAS  Google Scholar 

  19. Mardon, G. et al. Molec. cell. Biol. 10, 681–688 (1990).

    Article  CAS  Google Scholar 

  20. DeMars, R., LeVan, S. L., Trend, B. L. & Russell, L. B. Proc. natn. Acad. Sci. U.S.A. 73, 1693–1695 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Tettenborn, U., Dofuku, R. & Ohno, S. Nature 234, 37–40 (1971).

    Article  CAS  Google Scholar 

  22. Chomczynski, P. & Scacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  23. Veres, G., Gibbs, R. A., Scherer, S. E. & Caskey, C. T. Science 237, 415–417 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Chang, C., Kokontis, J. & Liao, S. Proc. natn. Acad. Sci. U.S.A. 85, 7211–7215 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Mitchell, M. et al. Genetics 121, 803–809 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Devi, K. R. G., Chan, Y.-L. & Wool, I. G. Biochim. biophys. Acta 1008, 258–262 (1989).

    Article  CAS  Google Scholar 

  27. Lovell-Badge, R. H. & Robertson, E. Development 109, 635–646 (1990).

    CAS  PubMed  Google Scholar 

  28. Gubbay, J. et al. Development 109, 647–653 (1990).

    CAS  PubMed  Google Scholar 

  29. Gubbay, J. et al. Nature 346, 245–250 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashworth, A., Rastan, S., Lovell-Badge, R. et al. X-chromosome inactivation may explain the difference in viability of XO humans and mice. Nature 351, 406–408 (1991). https://doi.org/10.1038/351406a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351406a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing