Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China)

Article metrics

Abstract

Cambrian fossil-Lagerstätten (sites of exceptional fossil preservation), such as those from Chengjiang (Lower Cambrian) and the Burgess Shale (Middle Cambrian), provide our best window into the Cambrian ‘explosion’. Such faunas are known from about 40 localities, and have yielded a widely disparate series of taxa ranging from ctenophores to agnathan fish. Recent excavations of the Chengjiang fossil-Lagerstätte, known from a series of sites near Kunming in Yunnan, south China, have resulted in the discovery of several new forms. In conjunction with material described earlier, these provide evidence for a new group of metazoans, the vetulicolians. Several features, notably a series of gill slits, suggest that this group can throw light on an early stage of deuterostome diversification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The Lower Cambrian vetulicolian Didazoon haoae Shu & Han gen. et sp. nov. from Dabanqiao, Yunnan.
Figure 5: Coiled guts (arrows in a and b) and surface membranes (arrows in cf) of vetulicolians.
Figure 2: The Lower Cambrian vetulicolian Xidazoon stephanus from Haikou, Kunming.
Figure 3: Gill structures of vetulicolians.
Figure 4: The Lower Cambrian vetulicolian Vetulicola cuneata (ae) from Chengjiang and Vetulicola rectangulata (f, g) from Haikou, Kunming.
Figure 6: The Lower Cambrian Yunnanozoon lividum from Chengjiang, Yunnan.

References

  1. 1

    Conway Morris, S. Evolution: Bringing molecules into the fold. Cell 100, 1–11 (2000).

  2. 2

    Valentine, J. W., Jablonski, D. & Erwin, D. H. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126, 851–859 (1999).

  3. 3

    Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

  4. 4

    Fioroni, P. Zur Signifikanz des Blastoporus-Verhaltens in evolutiver Hinisicht. Rev. Suisse Zool. 87, 261–272 (1980).

  5. 5

    Ogasawara, M. et al. Developmental expression of Pax 1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development 125, 2539–2550 (1999).

  6. 6

    Okai, N. et al. Characterization of gill-specific genes of the acorn worm Ptychodera flava. Dev. Dyn. 217, 309–319 (2000).

  7. 7

    Ogasawara, M. et al. Ascidian homologs of mammalian thyroid transcription Factor-1 gene are expressed in the endostyle. Zool. Sci. 16, 559–565 (1999).

  8. 8

    Ruppert, E. E., Cameron, C. B. & Frick, J. F. Endostyle-like features of the dorsal epibranchial ridge of an enteropneust and the hypothesis of dorsal-ventral axis inversion in chordates. Invert. Biol. 118, 202–212 (1999).

  9. 9

    Peterson, K. J. et al. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126, 85–95 (1999).

  10. 10

    Schaeffer, B. Deuterostome monophyly and phylogeny. Evol. Biol. 21, 179–235 (1987).

  11. 11

    Turbeville, J. M., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group fo the chordates: evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994).

  12. 12

    Wada, H. & Satoh, N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl Acad. Sci. USA 91, 1801–1804 (1994).

  13. 13

    Lacalli, T. C. The nature and origin of deuterostomes: some unresolved issues. Invert. Biol. 116, 363–370 (1997).

  14. 14

    Bromham, L. D. & Degnan, B. M. Hemichordate and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol. Dev. 1, 166–171 (1999).

  15. 15

    Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).

  16. 16

    Gee, H. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) Syst. Ass. Spec. 61, 1–14 (2001).

  17. 17

    Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. Taiwan 10, 11–105 (1997).

  18. 18

    Shu, D.-G. et al. A pipiscid-like fossil from the Lower Cambrian of south China. Nature 400, 746–749 (1999).

  19. 19

    Luo, H.-L. et al. Early Cambrian Chengjiang Fauna from Kunming Region, China (Yunnan Sci. Technol. Press, Kunming, 1999).

  20. 20

    Hou, X.-G. Early Cambrian large bivalved arthropods from Chengjiang, eastern Yunnan. Acta Palaeont. Sinica 26, 286–297 (1987).

  21. 21

    Chen, J.-Y. et al. The Chengjiang Biota: A Unique Window of the Cambrian Explosion (National Museum of Natural Science, Taiwan, 1996).

  22. 22

    Zhang, X.-L. et al. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. J. Geol. Soc. Lond. 158, 211–218 (2001).

  23. 23

    Gilmour, T. H. J. Feeding in pterobranch hemichordates and the evolution of gill slits. Can. J. Zool. 57, 1136–1142 (1979).

  24. 24

    Gilmour, T. H. J. Feeding in tornaria larvae and the development of gill slits in enteropneust hemichordates. Can. J. Zool. 60, 3010–3020 (1982).

  25. 25

    Jefferies, R. P. S. The Ancestry of the Vertebrates (British Museum (Natural History), London, 1986).

  26. 26

    Chen, J.-Y., Huang, D. Y. & Li, C. W. An early Cambrian craniate-like chordate. Nature 402, 518–522 (1999).

  27. 27

    Chen, J.-Y. et al. A possible early Cambrian chordate. Nature 377, 720–722 (1995).

  28. 28

    Shu, D.-G., Zhang, X. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).

  29. 29

    Dzik, J. Yunnanozoon and the ancestry of chordates. Acta Palaeont. Polonica 40, 341–360 (1995).

  30. 30

    Holland, N. D. & Chen, J.-Y. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and paleontology. BioEssays 23, 142–151 (2001).

  31. 31

    Shu, D.-G., Chen, L., Zhang, X.-L., Han, J. & Li, Y. Chengjiang Lagerstatte and earliest-known chordates. Zool. Sci. 18, 447–448 (2001).

  32. 32

    Hou, X.-G. et al. The Chengjiang Fauna: Exceptionally Well-preserved Animals From 530 Million Years Ago (Yunnan Sci. Technol. Press, Kunming, 1999).

  33. 33

    Hou, X.-G. & Bergström, J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45, 1–116 (1997).

  34. 34

    Shu, D.-G., Zhang, X.-L. & Chen, L. in Progress in Geology of China (1993–1996) (Papers to 30th International Geological Congress) 42–45 (Chinese Geological Society, Beijing, 1996).

  35. 35

    Romer, A. S. The vertebrate as a dual animal–somatic and visceral. Evol. Biol. 6, 121–156 (1972).

  36. 36

    Romer, A. S. The Vertebrate Body (Saunders, Philadelphia, 1964).

  37. 37

    Walcott, C. D. Middle Cambrian annelids. Smithson. Misc. Coll. 57, 109–144 (1911).

  38. 38

    Taguchi, S. et al. Characterization of a hemichordate fork head/HNF-3 gene expression. Dev. Genes Evol. 210, 11–17 (2000).

  39. 39

    Tagawa, K., Humphreys, T. & Satoh, N. Novel pattern of Brachyury gene expression in hemichordate embryos. Mech. Dev. 75, 139–143 (1998).

  40. 40

    Lacalli, T. C. Apical organs, epithelial domains, and the origin of the chordate central nervous system. Am. Zool. 34, 533–541 (1994).

  41. 41

    Tagawa, K., Humphreys, T. & Satoh, N. T-Brain expression in the apical organ of hemichordate tornaria larvae suggest its evolutionary link to the vertebrate forebrain. J. Exp. Zool. (Mol. Dev. Evol) 288, 23–31 (2000).

  42. 42

    Nielsen, C. Origin of the chordate central nervous system and the origin of chordates. Dev. Genes Evol. 209, 198–205 (1999).

  43. 43

    Gee, H. Before the Backbone: Views on the Origin of the Vertebrates (Chapman & Hall, London, 1996).

  44. 44

    Shu, D.-G. et al. Lower Cambrian vertebrates from South China. Nature 402, 42–46 (1999).

Download references

Acknowledgements

Supported by Ministry of Sciences and Technology of China, Natural Science Foundation of China, Education Department of China, and National Geographic, USA (D.-G.S., J.H., L.C., X.-L.Z., Z.-F.Z., H.-Q.L., Y.L. and J.-N.L.), the Royal Society, and St. John's College, Cambridge (S.C.M.). H.-L. Luo and S.-X. Hu gave access to material of Pomatrum in Kunming. We thank R. J. Aldridge, P. Janvier and R. P. S. Jefferies for comments, and L.-H. Guo, X.-X. Cheng, H.-X. Guo, S. J. Last and S. Capon for technical assistance.

Author information

Correspondence to D.-G. Shu.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shu, D., Morris, S., Han, J. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414, 419–424 (2001) doi:10.1038/35106514

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.