Issues and challenges facing rechargeable lithium batteries

Abstract

Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of the different battery technologies in terms of volumetric and gravimetric energy density.
Figure 2: Schematic representation and operating principles of Li batteries.
Figure 3: Schematic representations of polymer electrolyte networks.
Figure 4: Schematic drawing showing the shape and components of various Li-ion battery configurations.
Figure 5: Voltage versus capacity for positive- and negative-electrode materials presently used or under serious considerations for the next generation of rechargeable Li-based cells.
Figure 6: The crystal structure of olivine LiFePO4 in projection along [001].
Figure 7: Cycling behaviour at 55 °C of an optimized LiFePO4/C composite electrode (83% of active material) at a scan rate of C/10.
Figure 8: Arrhenius plot of conductivity for various solid electrolytes.

References

  1. 1

    Takeshita, H. Portable Li-ion,worldwide. Proc. Conf. Power 2000, San Diego, 25 September 2000.

  2. 2

    Ikeda, H., Saito, T. & Tamura, H. in Proc. Manganese Dioxide Symp. Vol. 1 (eds Kozawa, A. & Brodd, R. H.) (IC sample Office, Cleveland, OH, 1975).

  3. 3

    Steele, B. C. H. in Fast Ion Transport in Solids (ed. Van Gool, W.) 103–109 (North-Holland Amsterdam, 1973).

  4. 4

    Armand, M. B. in Fast Ion Transport in Solids (ed. Van Gool, W.) 665–673 (North-Holland Amsterdam, 1973).

  5. 5

    Rouxel, J., Danot, M., & Bichon, M. Les composites intercalaires NaxTiS2. Etude gènérale des phases NaxTiS2 et KxTiS2 . Bull. Soc. Chim. 11, 3930–3936 (1971).

  6. 6

    Di Salvo, F. J., Schwall, R., Geballe, T. H., Gamble, F. R. & Osieki, J. H. Precursor effects of superconductivity up to 35 °K in layered compounds. Phys. Rev. Lett. 27, 310–313 (1971).

  7. 7

    Whittingham, M. S. Electrochemical energy storage and intercalation chemistry. Science 192, 1226 (1976).

  8. 8

    Whittingham, M. S. Chalcogenide battery. US Patent 4009052.

  9. 9

    Rao, B. M. L., Francis, R. W. & Christopher, H. A. Lithium-aluminium electrodes. J. Electrochem. Soc. 124, 1490–1492 (1977).

  10. 10

    Broahead, J. & Butherus, A.D. Rechargeable non-aqueous battery. US Patent 3791867.

  11. 11

    Broadhead, J., DiSalvo, F. J. & Trumbore, F. A. Non-aqueous battery using chalcogenide electrode. US Patent 3864167.

  12. 12

    Murphy, D. W. & Christian, P. A. Solid state electrodes for high energy batteries. Science 205, 651–656 (1979).

  13. 13

    Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x†1): a new cathode material for batteries of high energy density. Mat. Res. Bull. 15, 783–789 (1980).

  14. 14

    Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mat. Res. Bull. 18, 461–472 (1983).

  15. 15

    Armand, M. B. in Materials for Advanced Batteries (Proc. NATO Symp. Materials Adv. Batteries) (eds Murphy, D. W., Broadhead, J. & Steele, B. C. H.) 145–161 (Plenum, New York, 1980).

  16. 16

    Murphy, D. W., DiSalvo, F. J., Carides, J. N. & Waszczak, J. V. Topochemical reactions of rutile related structures with lithium. Mat. Res. Bull. 13, 1395–1402 (1978).

  17. 17

    Lazzari, M. & Scrosati, B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127, 773–774 (1980).

  18. 18

    Will, F. G. Hermetically sealed secondary battery with lanthanum nickel anode. US patent 3874958 (1975).

  19. 19

    Percheron-Guegan, A., Achard, J. C., Sarradin, J. & Bronoël, G. Alliages à base de Lanthane et de Nickel et leurs applications électrochimiques. French patent 7516160 (1975).

  20. 20

    Guérard, D. & Hérold, A. New method for the preparation of lithium insertion compounds in graphite. C.R. Acad. Sci. C 275, 571–572 (1972).

  21. 21

    Basu, S. Ambient temperature rechargeable battery. US patent 4,423,125 (filing date, 13 September 1982; publication date, 27 Dec 1983).

  22. 22

    Mohri, M. et al. Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. J. Power Sources 26, 545–551 (1989).

  23. 23

    Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 9, 209 (1990).

  24. 24

    Armand, M., Chabagno, J. M. & Duclot, M. J. in Fast Ion Transport in Solids Electrodes and Electrolytes (eds Vashishta, P., Mundy, J.-N. & Shenoy, G. K.) 131–136 (North-Holland, Amsterdam, 1979).

  25. 25

    Kelly, I. E., Owen, J. R. & Steel, B. H. Poly(ethyleneoxide) electrolytes for operation at near room temperature. J. Power Sources 14, 13–21 (1985); Interfacial Electrochem. 168, 467 (1984).

  26. 26

    Tarascon, J.-M., Gozdz, A. S., Schmutz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49–54 (1996).

  27. 27

    Guyomard, D. in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics Vol. 9 (eds Osaka, T. & Datta, M.) 253–350 (Gordon & Breach Science Publishers, 2000).

  28. 28

    Dahn, J. R., Von Sacken, U., Juzkow, M. W. & Al-Janaby, H. Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138, 2207–2211 (1991).

  29. 29

    Yuan Gao, Yakovleva, M. V. & Ebner, W. B. Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries. Electrochem. Solid State Lett. 1, 117–119 (1998).

  30. 30

    Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

  31. 31

    Ammundsen, B. et al. in Proc. Int. Symp. Electrochem. Soc. Vol. 99-24, 57–67 (ECS, Pennington, NJ, 2000).

  32. 32

    Amatucci, G. G., Pereira, N., Zheng, T. & Tarascon, J.-M. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-yFz solid solution. J. Electrochem. Soc. 148, A171–A182 (2001).

  33. 33

    Amatucci, G. G., du Pasquier, A., Blyr, A., Zheng, T. & Tarascon, J.-M. The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochem. Acta 45, 255–271 (1999).

  34. 34

    Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

  35. 35

    Ravet, N. et al. Improved iron-based cathode material. Abstr. No. 127, ECS Fall meeting, Hawaii, 1999.

  36. 36

    Morcrette, M., Wurm, C., Gaubicher, J. & Masquelier, C. Polyanionic structures as alternative materials for lithium batteries. Abstr. No. 93, Electrode Materials Meeting, Bordeaux Arcachon, 27 May–1 June 2001.

  37. 37

    Cava, R. J., Murphy, D. W. & Zahurak, S. M. Lithium insertion in Wadsley-Roth phases based on Niobium oxide. J. Electrochem. Soc. 30, 2345–2351 (1983).

  38. 38

    Delmas, C., Brethes, S. & Menetrier, M. LixV2O5-ω, un nouveau matèriau d'électrode pour accumulateur au lithium. CR Acad. Sci. 310, 1425–1430 (1990).

  39. 39

    Le, D. B. et al. High surface area V2O5 aerogel intercalation electrodes. J. Electrochem. Soc. 143, 2099–2104 (1996).

  40. 40

    Dong, W., Rolison, D. R. & Dunn, B. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457–459 (2000).

  41. 41

    Visco, S. J. & de Jonghe, L. C. in Handbook of Solid-State Batteries and Capacitors (ed. Munshi, M. Z. A.) 515 (World Scientific, Singapore, 1995).

  42. 42

    Dahn, J. R. et al. Carbon and graphites as substitutes for the lithium anode. Industrial Chemistry Library Vol. 5 (ed. Pistoia, G.) (1994).

  43. 43

    Shodai, T., Okada, S., Tobishima, S. & Yamabi, I. Study of Li3-xMxN (M=Co, Ni or Cu) system for use as anode in lithium rechargeable cells. Solid State Ionics 86–88, 785–789 (1996).

  44. 44

    Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochem. Acta 45, 31–50 (1999).

  45. 45

    Anani, A., Crouch-Baker, S. & Huggins, R. A. Kinetics and thermodynamic parameters of several binary alloys negative electrode materials at ambient temperature. J. Electrochem. Soc. 134, 3098–3102 (1987).

  46. 46

    Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y. & Miyasaka, T. Tin-based amorphous oxide: a high capacity lithium-ion storage material. Science 276, 1395–1397 (1997).

  47. 47

    Courtney, I. A. & Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045–2052 (1997).

  48. 48

    Mao, O., Dunlap, R. A. & Dahn, J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries. I. The Sn2Fe-C system. J. Electrochem. Soc. 146, 405–413 (1999).

  49. 49

    Beaulieu, L. Y., Larcher, B., Dunlap, R. A. & Dahn, J. R. Reaction of Li with grain-boundary atoms in nano structured compounds. J. Electrochem. Soc. 147, 3206–3212 (2000).

  50. 50

    Kepler, K. D., Vaughey, J. T. & Thackeray, M. M. LixCu6Sn5 (0<x<13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid State Lett. 2, 307 (1999).

  51. 51

    Idota, Y. et al. Nonaqueous battery. US Patent No. 5,478,671 (1995).

  52. 52

    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon., J.-M. Nano-sized transition-metal oxides as negative-electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

  53. 53

    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon., J.-M. Electrochemical reactivity and reversibility of cobalt oxides towards lithium. C.R. Acad. Sci. II 681–691 (2000).

  54. 54

    Dominey, L. A. Current state of the art on lithium battery electrolytes Industrial Chemistry Library Vol. 5 (ed. Pistoia, G.) 137–165 (1994).

  55. 55

    Guyomard, D. & Tarascon, J. M. High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries. J. Power Sources 54, 92–98 (1995).

  56. 56

    Armand, M. The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994).

  57. 57

    Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

  58. 58

    Armand, M., Gorecki, W. & Andreani, R. in Second International Meeting on Polymer Electrolytes (ed. Scrosati, B.) 91–96 (Elsevier, London, 1989).

  59. 59

    Fauteux, D. in Polymer Electrolytes Reviews II (eds MacCallum, J. R. & Vincent, C. A.) 212 (Elsevier, London, 1989).

  60. 60

    Feuillade, G. & Perche, P. Ion conductive macromodular gels and membranes for solid lithium cells. J. Appl. Electrochem. 5, 63–69 (1975).

  61. 61

    Stallworth, P. E. et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 81, 739–747 (1999).

  62. 62

    MacGlashan, G. S., Andreev, Y. G. & Bruce, P. Structure of the polymer electrolyte poly(ethylene oxide): LiAsF6 . Nature 398, 792–793 (1999).

  63. 63

    Zheng, Y., Chia, F., Ungar, G. & Wright, P. V. Self-tracking in solvent-free, low-dimensional polymer electrolyte blends with lithium salts giving high ambient DC conductivity. Chem. Commun. 16, 1459–1460 (2000).

  64. 64

    Imrie, C. T., Ingram, M. D. & McHattie, G. S. Ion transport in glassy polymer electrolytes. J. Phys. Chem. B 103, 4132–4138 (1999).

  65. 65

    Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

  66. 66

    Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

  67. 67

    Aurbach, D. Review of selected electrode solution interactions which determine the performance of Li and Li-ion batteries. J. Power Sources 89, 206–218 (2000).

  68. 68

    Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000).

  69. 69

    Neudecker, B. J., Dudney, N. J. & Bates J. B Lithium-free thin film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

  70. 70

    Visco, S. J. The development of reversible lithium metal electrodes for advances Li/S batteries. Conf. Proc. Int. Meeting on Power Sources for Consumer and Industrial Applications, Hawaii, 3–6 September 2001.

  71. 71

    Orsini, F. et al. In situ SEM study of the interfaces in plastic lithium cells. J. Power Sources 81–82, 918–921 (1999).

Download references

Acknowledgements

The authors thank their colleagues, both in academic institutions and industry, for sharing the gratifying dedication to this field of progress, and P. Rickman for help drawing the figures.

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.