Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogen-storage materials for mobile applications

Abstract

Mobility — the transport of people and goods — is a socioeconomic reality that will surely increase in the coming years. It should be safe, economic and reasonably clean. Little energy needs to be expended to overcome potential energy changes, but a great deal is lost through friction (for cars about 10 kWh per 100 km) and low-efficiency energy conversion. Vehicles can be run either by connecting them to a continuous supply of energy or by storing energy on board. Hydrogen would be ideal as a synthetic fuel because it is lightweight, highly abundant and its oxidation product (water) is environmentally benign, but storage remains a problem. Here we present recent developments in the search for innovative materials with high hydrogen-storage capacity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Volume of 4 kg of hydrogen compacted in different ways, with size relative to the size of a car.
Figure 2: Reversibly stored amount of hydrogen on various carbon materials versus the specific surface area of the samples.
Figure 3: Hydrogen in carbon nanotubes.
Figure 4: Pressure–concentration–temperature plot and a van't Hoff curve (logarithm of the equilibrium or plateau pressure against the reciprocal temperature); values are for LaNi5.
Figure 5: Schematic model of a metal structure with H atoms in the interstices between the metal atoms, and H2 molecules at the surface.
Figure 6: Stored hydrogen per mass and per volume.

References

  1. 1

    Winter, C. J. & Nitsch, J. Hydrogen as an Energy Carrier: Technologies, Systems, Economy (Springer, 1988).

    Book  Google Scholar 

  2. 2

    Bain, A. & Van Vorst, W. D. Int. J. Hydrogen Energy 24, 399–403 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Shell Hydrogen, Hydro-Québec (HQ) & Gesellschaft für Elektrometallurgie (GfE). Hydrogen storage joint venture to be established. 〈http://www.shell.com〉 Press release (12-07-2001).

  4. 4

    Nellis, W. J., Louis, A. A. & Ashcroft, N. W. Metallization of fluid hydrogen. Phil. Trans. R. Soc. Lond. A 356, 119–135 (1998).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Orimo, S.-I. et al. Hydrogen in the mechanically prepared nanostructured graphite. Appl. Phys. Lett. 75, 3093 (1999).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Orimo, S., Matsushima, T., Fujii, H., Fukunaga, T. & Majer, G. Defective carbon for hydrogen storage—thermal desorption property of the mechanically prepared nanostructured graphite. J. Appl. Phys. (in the press).

  7. 7

    Stan, G. & Cole, M. W. Hydrogen adsorption in nanotubes. J. Low Temp. Phys. 110, 539–544 (1998).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Hirscher, M. (ed.) Hydrogen storage in nanoscale carbon and metals. Appl. Phys. A (special issue) 72, 2 (2001).

    Article  Google Scholar 

  9. 9

    Sholl, C. A. & Gray, E. MacA. (eds) Proc. Int. Symp. Metal Hydrogen Systems—Fundamentals and Applications, Noosa, Australia, 1–6 October 2000. J. Alloys Compounds (in the press).

    Google Scholar 

  10. 10

    Chambers, A., Park, C., Baker, R. T. K. & Rodriguez, N. M. Hydrogen storage in graphite nanofibers. Phys. Chem. B 102, 4253–4256 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Dillon, A. C. et al. Carbon nanotube materials for hydrogen storage. Proc. 2000 DOE/NREL Hydrogen program review, 8–10 May 2000.

  13. 13

    Hirscher, M. et al. Hydrogen storage in sonicated carbon materials. Appl. Phys. A 72, 129–132 (2001).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Züttel A. et al. Hydrogen sorption by carbon nanotubes and other carbon nanostructures. J. Alloys Compounds (in the press).

  15. 15

    Chen, P., Wu, X., Lin, J. & Tan, K. L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Hirscher, M. et al. Hydrogen storage in carbon nanostructures. J. Alloys Compounds (in the press).

  17. 17

    Nijkamp, M. G., Raaymakers, J. E. M. J., Van Dillen, A. J. & De Jong, K. P. Hydrogen storage using physisorption—materials demands. Appl. Phys. A 72, 619–623 (2001).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Züttel, A. et al. Hydrogen storage in carbon nanostructures. Int. J.Hydrogen Energy (in the press).

  19. 19

    Enoki, T., Shindo, K. & Sakamoto, N. Electronic properties of alkali-metal-hydrogen-graphite intercalation compounds. Z. Phys. Chem. 181, 75–82 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Schlapbach, L. (ed.) Hydrogen in Intermetallic Compounds I. Electronic, Thermodynamic, and Crystallographic Properties, Preparation (Topics in Applied Physics Vol. 63) (Springer, 1988).

    Book  Google Scholar 

  21. 21

    Schlapbach, L. (ed.) Hydrogen in Intermetallic Compounds II. Surface and Dynamic Properties, Applications (Topics in Applied Physics Vol. 67) (Springer, 1992).

    Google Scholar 

  22. 22

    Sandrock, G. & Thomas, G. The IEA/DOC/SNL on-line hydride databases. Appl. Phys. A 72, 153–155 (2001).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Sakai, T., Natsuoka, M. & Iwakura, C. Rare earth intermetallics for metal–hydrogen batteries. Handb. Phys. Chem. Rare Earths 21, 135–180 (1995).

    Google Scholar 

  24. 24

    Latroche, M., Percheron-Guegan, A. & Chabre, Y. Influence of cobalt content in MmNi(4.3–x)Mn0.3Al0.4Cox alloy (x = 0.36 and 0.69) on its electrochemical behaviour studied by in situ neutron diffraction. J. Alloys Compounds 295, 637–642 (1999).

    Article  Google Scholar 

  25. 25

    Schlapbach, L., Felix Meli, F., Züttel, A., Westbrook, J. H. & Fleischer, R. L. (eds) in Intermetallic Compounds: Principles and Practice Vol. 2, Ch. 22 (Wiley, 1994).

    Google Scholar 

  26. 26

    Zaluska, A., Zaluski, L. & Stroem-Olsen, J. O. Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72, 157 (2001).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Yvon, K. Complex transition metal hydrides. Chimia 52, 613–619 (1998).

    CAS  Google Scholar 

  28. 28

    Liu, F. J. & Suda, S. A method for improving the long-term storability of hydriding alloys by air water exposure. J. Alloys Compounds 231, 742–750 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Akiba, E. & Iba, H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6, 461–470 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Kuriiwa, T. et al. New V-based alloys with high protium absorption and desorption capacity. J. Alloys Compounds 295, 433–436 (1999).

    Article  Google Scholar 

  31. 31

    Tsukahara, M. et al. Hydrogen storage and electrode properties of V-based solid solution type alloys prepared by a thermic process. J. Electrochem. Soc. 147, 2941–2944 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Inoue, H. et al. Effect of ball-milling with Ni and Raney Ni on surface structural characteristics of TiV2.1Ni0.3 alloy. J. Alloys Compounds 325, 299–303 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Bogdanovic, B. & Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compounds 253, 1–9 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Swiss Federal Office of Energy (BFE), in contract with IEA, the Swiss Federal Office of Education and Science (BBW), and the University of Fribourg and EMPA for support of our hydrogen-storage research projects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Züttel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schlapbach, L., Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). https://doi.org/10.1038/35104634

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing