Water-maser emission from a planetary nebula with a magnetized torus

Abstract

A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation1. The water-vapour masers that are typical of the giant envelopes2,3 therefore are not expected to persist in planetary nebulae1,4. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Water-maser and OH-maser emission in the young planetary nebula K3-35.
Figure 2: Spectra of the OH 1,665-MHz and 1,667-MHz lines in K3-35.

References

  1. 1

    Lewis, B M. The chronological sequence of circumstellar masers: identifying proto-planetary nebulae. Astrophys. J. 338, 234–243 (1989).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Elitzur, M. Astronomical masers. Annu. Rev. Astron. Astrophys. 30, 75–112 (1992).

    ADS  Article  Google Scholar 

  3. 3

    Habing, H. J. Circumstellar envelopes and asymptotic giant branch stars. Astron. Astrophys. Rev. 7, 97–207 (1996).

    ADS  Article  Google Scholar 

  4. 4

    Gómez, Y., Moran, J. M. & Rodríguez, L. F. H2O and SiO maser emission in OH/IR stars. Rev. Mex. Astron. Astrophys. 20, 55–66 (1990).

    ADS  Google Scholar 

  5. 5

    Aaquist, O. B. Detailed radio morphology of the compact nebula K3-35. Astron. Astrophys. 267, 260–264 (1993).

    ADS  Google Scholar 

  6. 6

    Miranda, L. F. et al. High-resolution spectroscopy and broad-band imaging of the young planetary nebula K3-35. Mon. Not. R. Astron. Soc. 311, 748–754 (2000).

    ADS  Article  Google Scholar 

  7. 7

    Zhang, C. Y. A statistical distance scale for galactic planetary nebulae. Astrophys. J. Suppl. Ser. 98, 659–678 (1995).

    ADS  Article  Google Scholar 

  8. 8

    Kohoutek, L. Hamburg Schmidt-camera survey of faint planetary nebulae. Bull. Astron. Inst. Czech. 16, 221–226 (1965).

    ADS  Google Scholar 

  9. 9

    Engels, D., Schmid-Burgk, J., Walmsley, C. M. & Winnberg, A. K3-35: planetary nebula or compact HII region? Astron. Astrophys. 148, 344–346 (1985).

    ADS  CAS  Google Scholar 

  10. 10

    Aaquist, O. B. & Kwok, S. Bipolar radio morphology in the compact nebula K3-35. Astron. Astrophys. 222, 227–230 (1989).

    ADS  Google Scholar 

  11. 11

    Dayal, A. & Bieging, J. H. Millimeter-wave observations of CO in planetary nebulae. Astrophys. J. 472, 703–710 (1996).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Acker, A. Interactive winds in low-mass evolved stars. Astrophys. Space Sci. 260, 185–198 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13

    Evans, I. N. & Dopita, M. A. Theoretical models for HII regions. I. Diagnostic diagrams. Astrophys. J. Suppl. Ser. 58, 125–142 (1985).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Raga, A. C., Böhm, K.-H. & Cantó, J. A compilation of optical spectrophotometry of HH objects and its tentative interpretation. Rev. Mex. Astron. Astrofis. 32, 161–174 (1996).

    ADS  CAS  Google Scholar 

  15. 15

    Pottasch, S. R. Planetary Nebulae (Reidel, Dordrecht, 1984).

    Google Scholar 

  16. 16

    Acker, A., Marcout, J., Ochsenbein, F., Stenholm, B. & Tylenda, R. Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (ESO, Garching, 1992).

    Google Scholar 

  17. 17

    Zijlstra, A. A. et al. OH maser emission from young planetary nebulae. Astron. Astrophys. 217, 157–178 (1989).

    ADS  CAS  Google Scholar 

  18. 18

    Spencer, J. H., Johnston, K. J., Moran, J. M., Reid, M. J. & Walker, R. C. The structure of H2O masers associated with late-type stars. Astrophys. J. 230, 449–455 (1979).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Marvel, K. B. The circumstellar environment of evolved stars as revealed by studies of circumstellar water masers. Publ. Astron. Soc. Pacif. 109, 1286–1287 (1997).

    ADS  Article  Google Scholar 

  20. 20

    Bowers, P. F. & Morris, M. The three-dimensional structure of a circumstellar maser. Astrophys. J. 276, 646–652 (1984).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Likkel, L. & Morris, M. The circumstellar water fountains of IRAS 16342-3814: a very high velocity bipolar outflow. Astrophys. J. 329, 914–919 (1988).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Marvel, K. B. & Boboltz, D. A. Observations of water masers associated with the proto-planetary nebula candidate IRAS 19296+2227. Astron. J. 118, 1791–1797 (1999).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Goldreich, P., Keeley, D. A. & Kwan, J. Y. Astrophysical masers II. Polarization properties. Astrophys. J. 179, 111–134 (1973).

    ADS  Article  Google Scholar 

  24. 24

    Cohen, R. J. Compact maser sources. Rep. Prog. Phys. 52, 881–943 (1989).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Blackman, E. G., Frank, A., Markiel, J. M., Thomas, J. H. & Van Horn, H. M. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature 409, 485–487 (2001).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hu, J. Y., Slijkhuis, S., Rieu, N.-Q. & de Jong, T. IRAS 17150-3224: a young, optically bipolar, proto-planetary nebula. Astron. Astrophys. 273, 185–193 (1993).

    ADS  CAS  Google Scholar 

  27. 27

    Rozyczka, M. & Franco, J. Toroidal magnetic fields and the evolution of wind-driven nebulae. Astrophys. J. 469, L127–L130 (1996).

    ADS  Article  Google Scholar 

  28. 28

    Elitzur, M., Hollenbach, D. J. & McKee, C. F. H2O masers in star-forming regions. Astrophys. J. 346, 983–990 (1989).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Zijlstra, A. et al. Bipolar outflows in OH/IR stars. Mon. Not. R. Astron. Soc. 322, 280–308 (2001).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Elitzur, M., Hollenbach, D. J. & McKee, C. F. Planar H2O masers in star-forming regions. Astrophys. J. 394, 221–227 (1992).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. F. Rodríguez and P. Ho for comments. NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. G.A., L.F.M. and J.M.T. are supported partially by MCYT, Spain. Y.G. acknowledges support from DGAPA, UNAM and CONACyT, Mexico. G.A. acknowledges support from MEC, Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. F. Miranda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miranda, L., Gómez, Y., Anglada, G. et al. Water-maser emission from a planetary nebula with a magnetized torus. Nature 414, 284–286 (2001). https://doi.org/10.1038/35104518

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing