Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accessing genetic variation: genotyping single nucleotide polymorphisms

Key Points

  • There are intense continuing efforts to increase the throughput and accuracy, and reduce the costs, of methods for genotyping single nucleotide polymorphisms (SNPs). This is driven by the hope that SNPs can act as markers for identifying the genes that underlie multifactorial disorders.

  • PCR, invented in the 1980s, allows the sensitivity and specificity required for genotyping SNPs in large diploid genomes. The PCR step is the principal limiting factor in the throughput of current SNP-genotyping assays.

  • The large number of different SNP assays are based on a small number of reaction principles that have been combined with solid-phase or solution-based assay formats. Fluorescence is the most frequently used detection method.

  • Allele-specific oligonucleotides as probes or PCR primers are used to achieve high throughput in homogeneous solution phase assays that are monitored in real time during PCR. Alternatively, large numbers of oligonucleotide probes are immobilized at high density on microarrays to allow parallel analysis of many SNPs.

  • The most promising methods for accurate genotyping of SNPs involve nucleic-acid-modifying enzymes as genotyping tools. Frequently used enzymes are DNA polymerases, ligases and endonucleases.

  • Assays based on primer extension catalysed by a DNA polymerase are robust and have been adapted to various assay formats and detection strategies. These include colorimetric detection in microtitre plates, fluorescence detection using DNA sequencers, mass spectrometric detection and microarray-based assays with fluorescence detection.

  • Assays based on DNA ligation, or cleavage by FLAP endonucleases, have led to the development of SNP-genotyping methods in which a PCR amplification step is avoided. Instead, an enzymatic signal amplification scheme is used to obtain sufficient sensitivity.

  • Future SNP assays could be based on PCR carried out in microcapillaries streamlined with one of the enzymatic detection principles, and the assays could be multiplexed by combinatorial fluorescent labels.

Abstract

Understanding the relationship between genetic variation and biological function on a genomic scale is expected to provide fundamental new insights into the biology, evolution and pathophysiology of humans and other species. The hope that single nucleotide polymorphisms (SNPs) will allow genes that underlie complex disease to be identified, together with progress in identifying large sets of SNPs, are the driving forces behind intense efforts to establish the technology for large-scale analysis of SNPs. New genotyping methods that are high throughput, accurate and cheap are urgently needed for gaining full access to the abundant genetic variation of organisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 'Modular' design of some of the assays for SNP genotyping.
Figure 2: SNP genotyping by minsequencing using an 'array of arrays'.

References

  1. 1

    Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    CAS  Google Scholar 

  2. 2

    Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).References 1 and 2 report the frequency, distribution and features of single nucleotide variation from a whole-genome perspective, based on the results from the Human Genome Project and from Celera Genomics.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    CAS  Google Scholar 

  4. 4

    Davignon, J., Gregg, R. E. & Sing, C. F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8, 1–21 (1988).

    CAS  PubMed  Google Scholar 

  5. 5

    Bertina, R. M. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64–67 (1994).

    CAS  PubMed  Google Scholar 

  6. 6

    Jorde, L. B. et al. The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y-chromosome data. Am. J. Hum. Genet. 66, 979–988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Hacia, J. G. et al. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nature Genet. 22, 164–167 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Schork, N. J., Cardon, L. R. & Xu, X. The future of genetic epidemiology. Trends Genet. 14, 266–272 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Marth, G. et al. Single-nucleotide polymorphisms in the public domain: how useful are they? Nature Genet. 27, 371–372 (2001).

    CAS  PubMed  Google Scholar 

  11. 11

    Katsanis, N., Worley, K. C. & Lupski, J. R. An evaluation of the draft human genome sequence. Nature Genet. 29, 88–91 (2001).

    CAS  PubMed  Google Scholar 

  12. 12

    Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).A provocative and insightful commentary on the 'hype' related to genome-wide linkage disequilibrium mapping of the genes that underlie complex disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Roberts, L. Human genome research. SNP mappers confront reality and find it daunting. Science 287, 1898–1899 (2000).

    CAS  PubMed  Google Scholar 

  16. 16

    Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    CAS  Google Scholar 

  17. 17

    Collins, A., Lonjou, C. & Morton, N. E. Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl Acad. Sci. USA 96, 15173–15177 (1999).

    CAS  Google Scholar 

  18. 18

    Dequeker, E. & Cassiman, J. J. Evaluation of CFTR gene mutation testing methods in 136 diagnostic laboratories: report of a large European external quality assessment. Eur. J. Hum. Genet. 6, 165–175 (1998).

    CAS  PubMed  Google Scholar 

  19. 19

    Heim, R. A., Sugarman, E. A. & Allitto, B. A. Improved detection of cystic fibrosis mutations in the heterogeneous U.S. population using an expanded, pan-ethnic mutation panel. Genet. Med. 3, 168–176 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Rowley, P. T., Loader, S. & Kaplan, R. M. Prenatal screening for cystic fibrosis carriers: an economic evaluation. Am. J. Hum. Genet. 63, 1160–1174 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Wallace, R. B. et al. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 6, 3543–3557 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Conner, B. J. et al. Detection of sickle cell β S-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 80, 278–282 (1983).

    CAS  PubMed  Google Scholar 

  25. 25

    Mullis, K. B. & Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    CAS  PubMed  Google Scholar 

  26. 26

    Saiki, R. K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).References 25 and 26 are classic papers that contain the original descriptions of the polymerase chain reaction. PCR has changed the way human genetics is conducted and is the technology that allows detection of SNPs in the human genome.

    CAS  PubMed  Google Scholar 

  27. 27

    Saiki, R. K. et al. Diagnosis of sickle cell anemia and β-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N. Engl. J. Med. 319, 537–541 (1988).

    CAS  PubMed  Google Scholar 

  28. 28

    Saiki, R. K., Walsh, P. S., Levenson, C. H. & Erlich, H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl Acad. Sci. USA 86, 6230–6234 (1989).

    CAS  PubMed  Google Scholar 

  29. 29

    Southern, E. M., Maskos, U. & Elder, J. K. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017 (1992).

    CAS  PubMed  Google Scholar 

  30. 30

    Lipshutz, R. J. et al. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques 19, 442–447 (1995).

    CAS  PubMed  Google Scholar 

  31. 31

    Newton, C. R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503–2516 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Martin, E. R. et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am. J. Hum. Genet. 67, 383–394 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Ranade, K. et al. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 11, 1262–1268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Grupe, A. et al. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).A landmark paper in the SNP field because it is the first to show the value of an enzyme as a tool for genotyping SNPs. This study introduces the oligonucleotide ligation assay.

    CAS  PubMed  Google Scholar 

  36. 36

    Syvänen, A.-C., Aalto-Setala, K., Kontula, K. & Söderlund, H. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684–692 (1990).Introduces single nucleotide primer extension for SNP detection. It describes a solid-phase assay on microparticles, a double-labelling strategy, colorimetric detection on microtitre plate wells and duplex detection of two SNPs.

    PubMed  Google Scholar 

  37. 37

    Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L. & Syvanen, A. C. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Mir, K. U. & Southern, E. M. Determining the influence of structure on hybridization using oligonucleotide arrays. Nature Biotechnol. 17, 788–792 (1999).

    CAS  Google Scholar 

  39. 39

    Hacia, J. G. et al. Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays. Genome Res. 8, 1245–1258 (1998).A thorough article that presents a useful strategy for designing functional multiplex PCR panels. This study is also one of the early applications of high-density GeneChip microarrays for SNP detection and genotyping.

    CAS  PubMed  Google Scholar 

  40. 40

    Pease, A. C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA 91, 5022–5026 (1994).

    CAS  Google Scholar 

  41. 41

    Wang, D. G. et al. Large-scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Cho, R. J. et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genet. 23, 203–207 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Fotin, A. V., Drobyshev, A. L., Proudnikov, D. Y., Perov, A. N. & Mirzabekov, A. D. Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic Acids Res. 26, 1515–1521 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Prince, J. A. et al. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation. Genome Res. 11, 152–162 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Sosnowski, R. G., Tu, E., Butler, W. F., O'Connell, J. P. & Heller, M. J. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl Acad. Sci. USA 94, 1119–1123 (1997).

    CAS  PubMed  Google Scholar 

  46. 46

    Griffin, T. J., Tang, W. & Smith, L. M. Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry. Nature Biotechnol. 15, 1368–1372 (1997).

    CAS  Google Scholar 

  47. 47

    Ross, P. L., Lee, K. & Belgrader, P. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Anal. Chem. 69, 4197–4202 (1997).

    CAS  PubMed  Google Scholar 

  48. 48

    Orum, H., Jakobsen, M. H., Koch, T., Vuust, J. & Borre, M. B. Detection of the factor V Leiden mutation by direct allele-specific hybridization of PCR amplicons to photoimmobilized locked nucleic acids. Clin. Chem. 45, 1898–1905 (1999).

    CAS  PubMed  Google Scholar 

  49. 49

    Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W. & Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362 (1995).

    CAS  PubMed  Google Scholar 

  50. 50

    Livak, K. J. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149 (1999).

    CAS  PubMed  Google Scholar 

  51. 51

    Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    CAS  Google Scholar 

  52. 52

    Tyagi, S., Bratu, D. P. & Kramer, F. R. Multicolor molecular beacons for allele discrimination. Nature Biotechnol. 16, 49–53 (1998).The principle of Molecular Beacon probes for SNP detection is described elegantly by its inventors, both from a theoretical and a practical point of view.

    CAS  Google Scholar 

  53. 53

    Bonnet, G., Tyagi, S., Libchaber, A. & Kramer, F. R. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl Acad. Sci. USA 96, 6171–6176 (1999).

    CAS  PubMed  Google Scholar 

  54. 54

    Kuimelis, R. G., Livak, K. J., Mullah, B. & Andrus, A. Structural analogues of TaqMan probes for real-time quantitative PCR. Nucleic Acids Symp. Ser. 37, 255–256 (1997).

    CAS  Google Scholar 

  55. 55

    Lee, L. G. et al. Seven-color, homogeneous detection of six PCR products. Biotechniques 27, 342–349 (1999).

    CAS  PubMed  Google Scholar 

  56. 56

    Tyagi, S., Marras, S. A. & Kramer, F. R. Wavelength-shifting molecular beacons. Nature Biotechnol. 18, 1191–1196 (2000).

    CAS  Google Scholar 

  57. 57

    Tong, A. K., Li, Z., Jones, G. S., Russo, J. J. & Ju, J. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nature Biotechnol. 19, 756–759 (2001).

    CAS  Google Scholar 

  58. 58

    Tapp, I., Malmberg, L., Rennel, E., Wik, M. & Syvanen, A. C. Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and Molecular Beacon probes. Biotechniques 28, 732–738 (2000).

    CAS  PubMed  Google Scholar 

  59. 59

    Steemers, F. J., Ferguson, J. A. & Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnol. 18, 91–94 (2000).

    CAS  Google Scholar 

  60. 60

    Germer, S. & Higuchi, R. Single-tube genotyping without oligonucleotide probes. Genome Res. 9, 72–78 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Nazarenko, I. A., Bhatnagar, S. K. & Hohman, R. J. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res. 25, 2516–2521 (1997).References 60 and 61 describe 'closed tube' allele-specific PCR assays based on intercalating fluorescent dyes or FRET as the detection method. These assays are frequently used for medium- and high-throughput SNP genotyping.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Whitcombe, D., Theaker, J., Guy, S. P., Brown, T. & Little, S. Detection of PCR products using selfprobing amplicons and fluorescence. Nature Biotechnol. 17, 804–807 (1999).

    CAS  Google Scholar 

  63. 63

    Myakishev, M. V., Khripin, Y., Hu, S. & Hamer, D. H. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11, 163–169 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Beaudet, L., Bedard, J., Breton, B., Mercuri, R. J. & Budarf, M. L. Homogeneous assays for single-nucleotide polymorphism typing using AlphaScreen. Genome Res. 11, 600–608 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ye, S., Dhillon, S., Ke, X., Collins, A. R. & Day, I. N. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29, E88–8 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Medintz, I. et al. High-performance multiplex SNP analysis of three hemochromatosis-related mutations with capillary array electrophoresis microplates. Genome Res. 11, 413–421 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Syvanen, A. C. From gels to chips: 'minisequencing' primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10 (1999).

    CAS  PubMed  Google Scholar 

  68. 68

    Nikiforov, T. T. et al. Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res. 22, 4167–4175 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Pastinen, T., Partanen, J. & Syvanen, A. C. Multiplex, fluorescent, solid-phase minisequencing for efficient screening of DNA sequence variation. Clin. Chem. 42, 1391–1397 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Shumaker, J. M., Metspalu, A. & Caskey, C. T. Mutation detection by solid phase primer extension. Hum. Mutat. 7, 346–354 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Tully, G., Sullivan, K. M., Nixon, P., Stones, R. E. & Gill, P. Rapid detection of mitochondrial sequence polymorphisms using multiplex solid-phase fluorescent minisequencing. Genomics 34, 107–113 (1996).

    CAS  PubMed  Google Scholar 

  72. 72

    Nyren, P., Pettersson, B. & Uhlen, M. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal. Biochem. 208, 171–175 (1993).

    CAS  PubMed  Google Scholar 

  73. 73

    Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M. & Nyren, P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89 (1996).

    CAS  PubMed  Google Scholar 

  74. 74

    Alderborn, A., Kristofferson, A. & Hammerling, U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res. 10, 1249–1258 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Braun, A., Little, D. P. & Koster, H. Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158 (1997).

    CAS  PubMed  Google Scholar 

  76. 76

    Ross, P., Hall, L., Smirnov, I. & Haff, L. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nature Biotechnol. 16, 1347–1351 (1998).This combination of mass-spectrometric detection and multiplex primer extension represents a promising approach for high-throughput SNP genotyping.

    CAS  Google Scholar 

  77. 77

    Sauer, S. et al. A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res. 28, E13 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Li, J. et al. Single nucleotide polymorphism determination using primer extension and time-of-flight mass spectrometry. Electrophoresis 20, 1258–1265 (1999).

    CAS  PubMed  Google Scholar 

  79. 79

    Fortina, P. et al. Simple two-color array-based approach for mutation detection. Eur. J. Hum. Genet. 8, 884–894 (2000).

    CAS  PubMed  Google Scholar 

  80. 80

    Raitio, M. et al. Y-chromosomal SNPs in Finno-Ugric-speaking populations analyzed by minisequencing on microarrays. Genome Res. 11, 471–482 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Lindroos, K., Liljedahl, U., Raitio, M. & Syvanen, A. C. Minisequencing on oligonucleotide microarrays: comparison of immobilisation chemistries. Nucleic Acids Res. 29, E69–9 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Pastinen, T. et al. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 10, 1031–1042 (2000).Description of allele-specific primer extension on microarrays for multiplex SNP genotyping. The paper presents an 'array of arrays' format for microscope slides that is of general use for high-throughput genotyping.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Dubiley, S., Kirillov, E. & Mirzabekov, A. Polymorphism analysis and gene detection by minisequencing on an array of gel-immobilized primers. Nucleic Acids Res. 27, E19 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Erdogan, F., Kirchner, R., Mann, W., Ropers, H. H. & Nuber, U. A. Detection of mitochondrial single nucleotide polymorphisms using a primer elongation reaction on oligonucleotide microarrays. Nucleic Acids Res. 29, E36 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Hirschhorn, J. N. et al. SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping. Proc. Natl Acad. Sci. USA 97, 12164–12169 (2000).

    CAS  PubMed  Google Scholar 

  86. 86

    Fan, J. B. et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Cai, H. et al. Flow cytometry-based minisequencing: a new platform for high-throughput single-nucleotide polymorphism scoring. Genomics 66, 135–143 (2000).

    CAS  PubMed  Google Scholar 

  88. 88

    Chen, J. et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 10, 549–557 (2000).A clear presentation of the concept of generic 'tag' sequences as applied to SNP genotyping.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Taylor, J. D. et al. Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30, 661–675 (2001).

    CAS  PubMed  Google Scholar 

  90. 90

    Syvanen, A. C., Sajantila, A. & Lukka, M. Identification of individuals by analysis of biallelic DNA markers, using PCR and solid-phase minisequencing. Am. J. Hum. Genet. 52, 46–59 (1993).An early description of the power of quantitative analysis of pooled DNA samples for determination of population frequencies of SNP alleles.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Olsson, C., Waldenstrom, E., Westermark, K., Landegre, U. & Syvanen, A. C. Determination of the frequencies of ten allelic variants of the Wilson disease gene (ATP7B), in pooled DNA samples. Eur. J. Hum. Genet. 8, 933–938 (2000).

    CAS  PubMed  Google Scholar 

  92. 92

    Buetow, K. H. et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl Acad. Sci. USA 98, 581–584 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Chen, X. & Kwok, P. Y. Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Res. 25, 347–353 (1997).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Chen, X., Levine, L. & Kwok, P. Y. Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res. 9, 492–498 (1999).A good description of fluorescence polarization as a detection method in homogeneous SNP assays.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Nickerson, D. A. et al. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl Acad. Sci. USA 87, 8923–8927 (1990).

    CAS  PubMed  Google Scholar 

  96. 96

    Samiotaki, M., Kwiatkowski, M., Parik, J. & Landegren, U. Dual-color detection of DNA sequence variants by ligase-mediated analysis. Genomics 20, 238–242 (1994).

    CAS  PubMed  Google Scholar 

  97. 97

    Grossman, P. D. et al. High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22, 4527–4534 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    CAS  PubMed  Google Scholar 

  99. 99

    Broude, N. E., Woodward, K., Cavallo, R., Cantor, C. R. & Englert, D. DNA microarrays with stem–loop DNA probes: preparation and applications. Nucleic Acids Res. 29, E92 (2001).

  100. 100

    Gerry, N. P. et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol. 292, 251–262 (1999).

    CAS  PubMed  Google Scholar 

  101. 101

    Iannone, M. A. et al. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39, 131–140 (2000).

    CAS  PubMed  Google Scholar 

  102. 102

    Barany, F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl Acad. Sci. USA 88, 189–193 (1991).

    CAS  PubMed  Google Scholar 

  103. 103

    Luo, J., Bergstrom, D. E. & Barany, F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Day, D. J., Speiser, P. W., White, P. C. & Barany, F. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction. Genomics 29, 152–162 (1995).

    CAS  PubMed  Google Scholar 

  105. 105

    Khanna, M. et al. Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors. Oncogene 18, 27–38 (1999).

    CAS  PubMed  Google Scholar 

  106. 106

    Chen, X., Livak, K. J. & Kwok, P. Y. A homogeneous, ligase-mediated DNA diagnostic test. Genome Res. 8, 549–556 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).

    CAS  PubMed  Google Scholar 

  108. 108

    Nilsson, M. et al. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nature Genet. 16, 252–255 (1997).An early description of circularized 'padlock probes', used for the detection of SNPs in centromeric repeated sequences in situ.

    CAS  PubMed  Google Scholar 

  109. 109

    Fire, A. & Xu, S. Q. Rolling replication of short DNA circles. Proc. Natl Acad. Sci. USA 92, 4641–4645 (1995).

    CAS  PubMed  Google Scholar 

  110. 110

    Baner, J., Nilsson, M., Mendel-Hartvig, M. & Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26, 5073–5078 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Faruqi, A. F. et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2, 4 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Lyamichev, V. et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnol. 17, 292–296 (1999).

    CAS  Google Scholar 

  113. 113

    Hall, J. G. et al. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc. Natl Acad. Sci. USA 97, 8272–8277 (2000).

    CAS  PubMed  Google Scholar 

  114. 114

    Hsu, T. M., Law, S. M., Duan, S., Neri, B. P. & Kwok, P. Y. Genotyping single-nucleotide polymorphisms by the invader assay with dual-color fluorescence polarization detection. Clin. Chem. 47, 1373–1377 (2001).

    CAS  PubMed  Google Scholar 

  115. 115

    Mein, C. A. et al. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 10, 330–343 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Wilkins Stevens, P. et al. Analysis of single nucleotide polymorphisms with solid phase invasive cleavage reactions. Nucleic Acids Res. 29, E77 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Dong, S. et al. Flexible use of high-density oligonucleotide arrays for single-nucleotide polymorphism discovery and validation. Genome Res. 11, 1418–1424 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27, E34 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Tillib, S. V., Strizhkov, B. N. & Mirzabekov, A. D. Integration of multiple PCR amplifications and DNA mutation analyses by using oligonucleotide microchip. Anal. Biochem. 292, 155–160 (2001).

    CAS  PubMed  Google Scholar 

  120. 120

    Westin, L. et al. Anchored multiplex amplification on a microelectronic chip array. Nature Biotechnol. 18, 199–204 (2000).

    CAS  Google Scholar 

  121. 121

    Belgrader, P. et al. Rapid pathogen detection using a microchip PCR array instrument. Clin. Chem. 44, 2191–2194 (1998).

    CAS  PubMed  Google Scholar 

  122. 122

    Nakane, J. et al. A method for parallel, automated, thermal cycling of submicroliter samples. Genome Res. 11, 441–447 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Mitchell, P. Microfluidics-downsizing large-scale biology. Nature Biotechnol. 19, 717–721 (2001).

    CAS  Google Scholar 

  124. 124

    Taton, T. A., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    CAS  PubMed  Google Scholar 

  125. 125

    Dubertret, B., Calame, M. & Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol. 19, 365–370 (2001).

    CAS  Google Scholar 

  126. 126

    Hanninen, P. et al. A new microvolume technique for bioaffinity assays using two-photon excitation. Nature Biotechnol. 18, 548–550 (2000).

    CAS  Google Scholar 

  127. 127

    Healey, B. G., Matson, R. S. & Walt, D. R. Fiberoptic DNA sensor array capable of detecting point mutations. Anal. Biochem. 251, 270–279 (1997).

    CAS  PubMed  Google Scholar 

  128. 128

    Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001).A clear description of the properties of quantum dot nanocrystals. Optical coding of microparticles with quantum dots offers the promise of highly multiplexed SNP assays.

    CAS  Google Scholar 

  129. 129

    Woolley, A. T., Guillemette, C., Li Cheung, C., Housman, D. E. & Lieber, C. M. Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nature Biotechnol. 18, 760–763 (2000).

    CAS  Google Scholar 

  130. 130

    Lim, A. et al. Shotgun optical maps of the whole Escherichia coli O157:H7 genome. Genome Res. 11, 1584–1593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Zhu, X. et al. Linkage and association analysis of angiotensin I-converting enzyme (ACE)-gene polymorphisms with ACE concentration and blood pressure. Am. J. Hum. Genet. 68, 1139–1148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  Google Scholar 

  133. 133

    Nickerson, D. A. et al. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 10, 1532–1545 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Pastinen, T. et al. Dissecting a population for targeted screening of disease mutations. Hum. Mol. Genet. (in the press).

  135. 135

    Johnson, G. C. et al. Haplotype tagging for the identification of common disease genes. Nature Genet. 29, 233–237 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Rioux, J. D. et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nature Genet. 29, 223–228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Lindblad-Toh, E. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genet. 24, 381–386 (2000).

    CAS  Google Scholar 

  138. 138

    Germer, S., Holland, M. J. & Higuchi, R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res. 10, 258–266 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The development and application of technology for single nucleotide polymorphism genotyping in my laboratory is supported by the Swedish Research Council and by the Wallenberg Consortium Nord. I thank Å. Dahllöf and A. Bernsel for help with the reference list.

Author information

Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

β-globin

apolipoprotein E

factor V Leiden

FURTHER INFORMATION

Affymetrix (GeneFlex®, GeneChips)

AP Biotech (rolling circle amplification)

Applied Biosystems (TaqMan, SnaPshot, PinPoint assay)

Celera Genomics

Encyclopedia of life sciences

Complex multifactorial genetic diseases

Genetic variation: human

Illumina

Luminex

Molecular Beacon

Molecular Staging (rolling circle amplification)

Orchid Biosciences (Genetic Bit Analysis, SNPstream)

Packard Bioscience (AlphaScreen)

Perkin Elmer Life Sciences (TDI)

Pyrosequencing AB

Sequenom (MassArray)

SNP Consortium

ThermoHybaid (DASH)

Third Wave Technologies (Invader assay)

Glossary

LINKAGE DISEQUILIBRIUM MAPPING

Analysing single nucleotide polymorphism alleles in population-based studies to identify loci that are associated with a particular disease or phenotype.

REVERSE DOT BLOT

A genotyping method based on hybridization between allele-specific oligonucleotide probes that have been immobilized on a membrane, and amplified DNA fragments in solution.

PEPTIDE NUCLEIC ACID

(PNA). Biopolymer molecule that consists of DNA bases connected by a backbone of peptide bonds instead of phosphodiester bonds as in natural DNA.

LOCKED NUCLEIC ACID

(LNA). DNA analogues in which the 2′ and 4′ positions in a furanose ring are connected by a methylene moiety.

FLUORESCENCE RESONANCE ENERGY TRANSFER

A phenomenon by which the energy from an excited fluorophore is transferred to an acceptor molecule at short (<100 Å) distances, leading to quenching of the fluorescence. The efficiency of energy transfer depends strongly on the distance between the donor and acceptor molecules.

PRIMER DIMER

Unwanted PCR products formed when two primers interact during the extension phase of PCR, followed by extension of the 3′-end of one or both primers with the other primer acting as a template.

ELISA

(enzyme-linked immunosorbent assay). A widely used immunochemical method for detecting antigens or antibodies. ELISA methods are carried out in microtitre plates and use colorimetric detection.

HAPTEN

Small molecule that is able to invoke an antibody response when used for immunization of an animal.

PYROSEQUENCING

A method for DNA sequencing, in which the inorganic pyrophosphate (PPi) that is released from a nucleoside triphosphate on DNA chain elongation is detected by a bioluminometric assay.

MICROSPHERES

(also known as microparticles or microbeads). Small 1–100-μm diameter particles used as solid supports in bioassays. They can carry a probe or primer, and can contain internal magnetic compounds to allow magnetic separation or internal fluorescent compounds for labelling.

FLUORESCENCE POLARIZATION

A detection method based on excitation of a fluorescent molecule by plane-polarized light, and measurement of the rate of depolarization of fluorescence. This rate is proportional to the rate of tumbling of a fluorescent molecule. As small molecules tumble faster than large molecules in solution, fluorescent molecules of different sizes can be distinguished.

TWO-PHOTON EXCITATION

A detection system in which excitation of fluorophores takes place only in a small three-dimensional focal volume.

QUANTUM DOT

Nanocrystal that consists of a core of cadmium selenide wrapped with multiple monolayers of zinc sulphide that have several times higher extinction coefficients than organic fluorophores. The quantum dots can be excited with light of a single wavelength, and emit very bright fluorescence at several wavelengths that are determined by the size of the cadmium selenide core.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Syvänen, AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2, 930–942 (2001). https://doi.org/10.1038/35103535

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing