Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge


Axial volcano, which is located near the intersection of the Juan de Fuca ridge and the Cobb–Eickelberg seamount chain beneath the northeast Pacific Ocean, is a locus of volcanic activity thought to be associated with the Cobb hotspot1. The volcano rises 700 metres above the ridge, has substantial rift zones extending about 50 kilometres to the north and south, and has erupted as recently as 1998 (ref. 2). Here we present seismological data that constrain the three-dimensional velocity structure beneath the volcano. We image a large low-velocity zone in the crust, consisting of a shallow magma chamber and a more diffuse reservoir in the lower crust, and estimate the total magma volume in the system to be between 5 and 21 km3. This volume is two orders of magnitude larger than the amount of melt emplaced during the most recent eruption3,4 (0.1–0.2 km3). We therefore infer that such volcanic events remove only a small portion of the reservoir that they tap, which must accordingly be long-lived compared to the eruption cycle. On the basis of magma flux estimates, we estimate the crustal residence time of melt in the volcanic system to be a few hundred to a few thousand years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bathymetry of Axial volcano.
Figure 2: Example record sections showing the low-velocity zone.
Figure 3: Results of chequerboard resolution tests in a 25 × 25 km box.
Figure 4: Cross-sectional views of Axial volcano, showing velocity structure and interpretation.


  1. 1

    Johnson, H. P. & Embley, R. W. Axial seamount: An active ridge axis volcano on the central Juan de Fuca ridge. J. Geophys. Res. 95, 12689–12696 (1990).

    ADS  Article  Google Scholar 

  2. 2

    Embley, R. W., Chadwick, W. W. Jr, Clague, D. A. & Stakes, D. 1998 eruption of Axial Volcano; multibeam anomalies and seafloor observations. Geophys. Res. Lett. 26, 3425–3428 (1999).

    ADS  Article  Google Scholar 

  3. 3

    Chadwick, W. W. Jr, Embley, R. W., Milburn, H. B., Meinig, C. & Stapp, M. Evidence for deformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca ridge, from acoustic extensometer measurements. Geophys. Res. Lett. 26, 3441–3444 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Fox, C. G., Chadwick, W. W. Jr & Embley, R. W. Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow. Nature 412, 727–729 (2001).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Desonie, D. L. & Duncan, R. A. The Cobb-Eickelberg seamount chain; hotspot volcanism with mid-ocean ridge basalt affinity. J. Geophys. Res. 95, 12697–12711 (1990).

    ADS  Article  Google Scholar 

  6. 6

    Hooft, E. E. E. & Detrick, R. S. Relationship between axial morphology, crustal thickness, and mantle temperature along the Juan de Fuca and Gorda Ridges. J. Geophys. Res. 100, 22499–22508 (1995).

    ADS  Article  Google Scholar 

  7. 7

    Tolstoy, M., Vernon, F. L., Orcutt, J. A. & Wyatt, F. K. The breathing of the seafloor: Tidal correlations of seismicity at Axial Volcano. Geology (submitted).

  8. 8

    Dziak, R. P. & Fox, C. G. Long-term seismicity and ground deformation at Axial Volcano, Juan de Fuca Ridge. Geophys. Res. Lett. 26, 3641–3644 (1999).

    ADS  Article  Google Scholar 

  9. 9

    Dziak, R. P. & Fox, C. G. The January 1998 earthquake swarm at Axial Volcano, Juan de Fuca Ridge: Hydroacoustic evidence of seafloor volcanic activity. Geophys. Res. Lett. 26, 3429–3432 (1999).

    ADS  Article  Google Scholar 

  10. 10

    Fox, C. G. In situ ground deformation measurements from the summit of Axial Volcano during the 1998 volcanic episode. Geophys. Res. Lett. 26, 3437–3440 (1999).

    ADS  Article  Google Scholar 

  11. 11

    Hildebrand, J. A. et al. A seafloor and sea surface gravity survey of Axial Volcano. J. Geophys. Res. 95, 12751–12763 (1990).

    ADS  Article  Google Scholar 

  12. 12

    Webb, S. C., Deaton, T. K. & Lemire, J. C. A broadband ocean-bottom seismometer system based on a 1-Hz natural period geophone. Bull. Seismol. Soc. Am. 91, 304–312 (2001).

    Article  Google Scholar 

  13. 13

    Cudrak, C. F. & Clowes, R. M. Crustal structure of Endeavour Ridge segment, Juan de Fuca Ridge, from a detailed seismic refraction survey. J. Geophys. Res. 98, 6329–6349 (1993).

    ADS  Article  Google Scholar 

  14. 14

    Sohn, R. A., Webb, S. C., Hildebrand, J. A. & Cornuelle, B. D. Three-dimensional tomographic velocity structure of upper crust, CoAxial segment, Juan de Fuca Ridge; implications for on-axis evolution and hydrothermal circulation. J. Geophys. Res. 102, 17679–17695 (1997).

    ADS  Article  Google Scholar 

  15. 15

    Dawson, P. B., Chouet, B. A., Okubo, P. G., Villasenor, A. & Benz, H. M. Three-dimensional velocity structure of the Kilauea caldera. Geophys. Res. Lett. 26, 2805–2808 (1999).

    ADS  Article  Google Scholar 

  16. 16

    Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. J. Geophys. Res. 105, 23537–23555 (2000).

    ADS  Article  Google Scholar 

  17. 17

    Canales, J. P., Collins, J. A., Escartín, J. & Detrick, R. S. Seismic structure across the rift valley of the Mid Atlantic Ridge at 23°20′ (MARK area): Implications for crustal accretion processes at slow spreading ridges. J. Geophys. Res. 105, 28411–28425 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Henstock, T. J., Woods, A. W. & White, R. S. The accretion of oceanic crust by episodic sill intrusion. J. Geophys. Res. 98, 4143–4161 (1993).

    ADS  Article  Google Scholar 

  20. 20

    Christensen, N. I. Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones. J. Geophys. Res. 84, 6849–6857 (1979).

    ADS  Article  Google Scholar 

  21. 21

    Karato, S. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    ADS  Article  Google Scholar 

  22. 22

    Kampfmann, W. & Berckhemer, H. High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Phys. Earth Planet. Inter. 40, 223–247 (1985).

    ADS  Article  Google Scholar 

  23. 23

    Chen, W. P. & Molnar, P. Focal depths for intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. 88, 4183–4214 (1983).

    ADS  Article  Google Scholar 

  24. 24

    Huang, P. Y. & Solomon, S. C. Centroid depths of mid-ocean ridge earthquakes: dependence on spreading rate. J. Geophys. Res. 93, 13445–13477 (1988).

    ADS  Article  Google Scholar 

  25. 25

    Schmeling, H. Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity. Phys. Earth Planet. Inter. 41, 34–57 (1985).

    ADS  Article  Google Scholar 

  26. 26

    Mainprice, D. Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophysics 279, 161–179 (1997).

    ADS  Article  Google Scholar 

  27. 27

    Hammond, W. C. & Humphreys, E. D. Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. J. Geophys. Res. 105, 10975–10986 (2000).

    ADS  Article  Google Scholar 

  28. 28

    Sato, H., Sacks, I. S. & Murase, T. The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone; comparison with heat flow and electrical conductivity studies. J. Geophys. Res. 94, 5689–5704 (1989).

    ADS  Article  Google Scholar 

  29. 29

    Wilcock, W. S. D., Dougherty, M. E., Solomon, S. C., Purdy, G. M. & Toomey, D. R. Seismic propagation across the East Pacific Rise: finite difference experiments and implications for seismic tomography. J. Geophys. Res. 98, 19913–19932 (1993).

    ADS  Article  Google Scholar 

  30. 30

    Rhodes, J. M., Morgan, C. & Liias, R. A. Geochemistry of Axial Seamount lavas; magmatic relationship between the Cobb hotspot and the Juan de Fuca Ridge. J. Geophys. Res. 95, 12713–12733 (1990).

    ADS  Article  Google Scholar 

Download references


We thank C. Golden, J. Floyd, D. Bohnenstiehl, V. Ballu, and the crews of the RV Thomas G. Thompson and the RV Maurice Ewing for efforts at sea; M. Spiegelman, J. Chadwick, M. Perfit and S. Carbotte for discussions; and C. Fox and W. Chadwick for comments on the manuscript. This work was supported by the US National Science Foundation.

Author information



Corresponding author

Correspondence to M. West.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

West, M., Menke, W., Tolstoy, M. et al. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature 413, 833–836 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links