Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Molecular markers in CNS stem cell research: hitting a moving target

Abstract

The study of neural stem cell biology is hindered by the absence of well-defined markers for neural stem cells and neuronal progenitors. Without the ability to identify the relevant cell types, the analysis of how the diverse cell populations of the central nervous system are generated becomes virtually impossible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complexity of neural cell lineage.
Figure 2: Our strategy to discover CNS stem and progenitor cell genes.

Similar content being viewed by others

References

  1. Raff, M. C. et al. Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274, 813–816 (1978).

    Article  CAS  Google Scholar 

  2. Geisert, E. E. Jr., & Frankfurter, A. The neuronal response to injury as visualized by immunostaining of class III β-tubulin in the rat. Neurosci. Lett. 102, 137–141 (1989).

    Article  Google Scholar 

  3. Zhang, S.-C. Defining glial cells during CNS development. Nature Rev. Neurosci. 2, 840–843 (2001).

    Article  CAS  Google Scholar 

  4. Lendahl, U., Zimmerman, L. B. & McKay, R. D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  Google Scholar 

  5. Clarke, S. R., Shetty, A. K., Bradley, J. L. & Turner, D. A. Reactive astrocytes express the embryonic intermediate neurofilament nestin. Neuroreport 5, 1885–1888 (1994).

    Article  CAS  Google Scholar 

  6. Sejersen, T. & Lendahl, U. Transient expression of the intermediate filament nestin during skeletal muscle development. J. Cell Sci. 106, 1291–1300 (1993).

    CAS  PubMed  Google Scholar 

  7. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  8. Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996).

    Article  CAS  Google Scholar 

  9. Vescovi, A. L., Reynolds, B. A., Fraser, D. D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966 (1993).

    Article  CAS  Google Scholar 

  10. Ciccolini, F. & Svendsen, C. N. Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci. 18, 7869–7880 (1998).

    Article  CAS  Google Scholar 

  11. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M. & McKay, R. D. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996).

    Article  CAS  Google Scholar 

  12. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  Google Scholar 

  13. Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188 (1999).

    Article  CAS  Google Scholar 

  14. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  Google Scholar 

  15. Gage, F. H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl Acad. Sci. USA 92, 11879–11883 (1995).

    Article  CAS  Google Scholar 

  16. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997).

    Article  CAS  Google Scholar 

  17. Kempermann, G., Kuhn, H. G. & Gage, F. H. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212 (1998).

    Article  CAS  Google Scholar 

  18. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  Google Scholar 

  19. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  20. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  Google Scholar 

  21. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  Google Scholar 

  22. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  Google Scholar 

  23. Brazelton, T. R., Rossi, F. M., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    Article  CAS  Google Scholar 

  24. Luo, Z. & Geschwind, D. H. Microarray applications in neuroscience. Neurobiol. Dis. 8, 183–193 (2001).

    Article  CAS  Google Scholar 

  25. Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Med. 5, 117–122 (1999).

    Article  CAS  Google Scholar 

  26. Gall, C. M. Regulation of brain neurotrophin expression by physiological activity. Trends Pharmacol. Sci. 13, 401–403 (1992).

    Article  CAS  Google Scholar 

  27. Vician, L. et al. Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc. Natl Acad. Sci. USA 92, 2164–2168 (1995).

    Article  CAS  Google Scholar 

  28. Vician, L., Basconcillo, R. & Herschman, H. R. Identification of genes preferentially induced by nerve growth factor versus epidermal growth factor in PC12 pheochromocytoma cells by means of representational difference analysis. J. Neurosci. Res. 50, 32–43 (1997).

    Article  CAS  Google Scholar 

  29. Terskikh, A. V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl Acad. Sci. USA 98, 7934–7939 (2001).

    Article  CAS  Google Scholar 

  30. Geschwind, D. H. et al. A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339 (2001).

    Article  CAS  Google Scholar 

  31. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 97, 14720–14725 (2000).

    Article  CAS  Google Scholar 

  32. Rietze, R. L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    Article  CAS  Google Scholar 

  33. Keyoung, H. M. et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nature Biotechnol. 19, 843–850 (2001).

    Article  CAS  Google Scholar 

  34. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are suppoted by the US National Institute of Mental Health. We thank M. Easterday for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harley I. Kornblum.

Related links

Related links

DATABASES

LocusLink

EGF

FGF

GFAP

musashi

nestin

β-tubulin III

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornblum, H., Geschwind, D. Molecular markers in CNS stem cell research: hitting a moving target. Nat Rev Neurosci 2, 843–846 (2001). https://doi.org/10.1038/35097597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing