Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Interventional strategies against prion diseases

Abstract

Only a few years ago, the idea that transmissible spongiform encephalopathies could be treated pharmacologically would have met with considerable scepticism. Even now, there is no way to cure a patient or animal suffering from a manifest prion disease. But recent, exciting developments seem to indicate that immunological and pharmacological interventions could have some potential for the pre-exposure and post-exposure prophylaxis of prion diseases. Although it is unlikely that we will be able to cure the clinically overt stages of prion diseases in the foreseeable future, palliative and even life-prolonging interventions might no longer be confined to the realm of science fiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuropathological features of transmissible spongiform encephalopathies.

Similar content being viewed by others

References

  1. Aguzzi, A., Montrasio, F. & Kaeser, P. S. Prions: health scare and biological challenge. Nature Rev. Mol. Cell Biol. 2, 118–126 (2001).

    Article  CAS  Google Scholar 

  2. Weissmann, C. & Aguzzi, A. Bovine spongiform encephalopathy and early onset variant Creutzfeldt–Jakob disease. Curr. Opin. Neurobiol. 7, 695–700 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Aguzzi, A. & Weissmann, C. Prion research: the next frontiers. Nature 389, 795–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Tremblay, P. et al. Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc. Natl Acad. Sci. USA 95, 12580–12585 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruce, M. E. et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 389, 498–501 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Aguzzi, A. Between cows and monkeys. Nature 381, 734 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Korth, C., May, B. C., Cohen, F. E. & Prusiner, S. B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci. USA 98, 9836–9841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roikhel, V. M., Fokina, G. I. & Pogodina, V. V. Influence of aminasine on experimental scrapie in mice. Acta Virol. 28, 321–324 (1984).

    CAS  PubMed  Google Scholar 

  12. Doh-Ura, K., Iwaki, T. & Caughey, B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74, 4894–4897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aguzzi, A. & Weissmann, C. Sleepless in Bologna: transmission of fatal familial insomnia. Trends Microbiol. 4, 129–131 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Caughey, B. & Race, R. E. Potent inhibition of scrapie-associated PrP accumulation by Congo red. J. Neurochem. 59, 768–771 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Pocchiari, M., Schmittinger, S. & Masullo, C. Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol. 68, 219–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Tagliavini, F. et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276, 1119–1122 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Caughey, B. & Raymond, G. J. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 643–650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Farquhar, C., Dickinson, A. & Bruce, M. Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 353, 117 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Priola, S. A., Raines, A. & Caughey, W. S. Porphyrin and phthalocyanine antiscrapie compounds. Science 287, 1503–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Supattapone, S. et al. Branched polyamines cure prion-infected neuroblastoma cells. J. Virol. 75, 3453–3461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soto, C. et al. Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet 355, 192–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Aguzzi, A. Neuro-immune connection in spread of prions in the body? Lancet 349, 742–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Nicotera, P. A route for prion neuroinvasion. Neuron 31, 345–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Heppner, F. L. et al. Transepithelial prion transport by M cells. Nature Med. 7, 976–977 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Mackay, F. & Browning, J. L. Turning off follicular dendritic cells. Nature 395, 26–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Shlomchik, M. J., Radebold, K., Duclos, N. & Manuelidis, L. Neuroinvasion by a Creutzfeldt–Jakob disease agent in the absence of B cells and follicular dendritic cells. Proc. Natl Acad. Sci. USA 98, 9289–9294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ware, C. F., VanArsdale, T. L., Crowe, P. D. & Browning, J. L. The ligands and receptors of the lymphotoxin system. Curr. Top. Microbiol. Immunol. 198, 175–218 (1995).

    CAS  PubMed  Google Scholar 

  33. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M. H. & Pfeffer, K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Rennert, P. D., Browning, J. L., Mebius, R., Mackay, F. & Hochman, P. S. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Koni, P. A. et al. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 6, 491–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Korner, H. et al. Distinct roles for lymphotoxin-α and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 27, 2600–2609 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Mabbott, N. A., Bruce, M. E., Botto, M., Walport, M. J. & Pepys, M. B. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Med. 7, 485–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Picklo, M. J. Methods of sympathetic degeneration and alteration. J. Auton. Nerv. Syst. 62, 111–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31, 25–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Carlson, S. L. et al. NGF modulates sympathetic innervation of lymphoid tissues. J. Neurosci. 15, 5892–5899 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gabizon, R., McKinley, M. P., Groth, D. & Prusiner, S. B. Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl Acad. Sci. USA 85, 6617–6621 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Horiuchi, M. & Caughey, B. Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193–3203 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    CAS  PubMed  Google Scholar 

  47. Büeler, H. R. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  Google Scholar 

  48. Brandner, S. et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl Acad. Sci. USA 93, 13148–13151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prusiner, S. B. et al. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc. Natl Acad. Sci. USA 90, 10608–10612 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Büeler, H. R. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  PubMed  Google Scholar 

  51. Korth, C. et al. Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390, 74–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Heppner, F. L. et al. Prevention of scrapie by transgenic anti-prion protein immunization. Science published online September 6 2001 (10.1126/science.1063093).

Download references

Acknowledgements

Supported by grants of the Bundesamt für Bildung und Wissenschaft, the National Centre of Competence in Research (NCCR-Neuro) and the Swiss National Foundation. We acknowledge technical help from P. Schwarz. F.L.H. is a Human Frontier Science Program and Stammbach Foundation fellow, and M.P. is a Deutsche Forschungsgemeinschaft fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Related links

Related links

DATABASE LINKS

LocusLink

APP

huntingtin

LTβR

lymphotoxin-α

lymphotoxin-β

Prnp

TAU

TNF

TNFR1

OMIM

CJD

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A., Glatzel, M., Montrasio, F. et al. Interventional strategies against prion diseases. Nat Rev Neurosci 2, 745–749 (2001). https://doi.org/10.1038/35094590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing