Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokines and acute neurodegeneration

Key Points

  • Several cytokines are induced rapidly after acute brain injury. They are expressed in a temporal and spatial pattern that is consistent with their involvement in subsequent neuronal death.

  • Studies on the role of exogenous and endogenous cytokines in vivo and in vitro have yielded conflicting data. In general terms, interleukin 1 seems to contribute directly to neurodegeneration, whereas transforming growth factor-β is neuroprotective. Tumour necrosis factor-α can both enhance and inhibit neuronal injury; this dual action probably depends on the time course and level of its expression.

  • The complex actions and putative mechanisms of cytokines in the nervous system are similar to their functions in the periphery. Cytokines can act at very low concentrations on numerous cell types within or outside the brain. It is likely that the contribution of cytokines to neurodegeneration does not involve a single mechanism on one specific cell type, but rather depends on several actions, which might be detrimental or beneficial.

  • The primary mechanisms that regulate cytokine bioavailability, and the sites and mechanisms of action that result in neuronal death, have begun to be identified. Similarly, the pathways that transduce cytokine signalling and the interactions between these pathways are beginning to be understood. These insights will allow more effective interventions for the treatment of stroke and other types of brain injury.

Abstract

Cytokines have been implicated as mediators and inhibitors of diverse forms of neurodegeneration. They are induced in response to brain injury and have diverse actions that can cause, exacerbate, mediate and/or inhibit cellular injury and repair. Here we review evidence for the contribution of cytokines to acute neurodegeneration, focusing primarily on interleukin 1 (IL-1), tumour necrosis factor-α (TNFα) and transforming growth factor-β (TGFβ). TGFβ seems to exert primarily neuroprotective actions, whereas TNFα might contribute to neuronal injury and exert protective effects. IL-1 mediates ischaemic, excitotoxic and traumatic brain injury, probably through multiple actions on glia, neurons and the vasculature. Understanding cytokine action in acute neurodegeneration could lead to novel and effective therapeutic strategies, some of which are already in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Damage after focal cerebral ischaemia.
Figure 2: Cytokine expression profile.
Figure 3: Signal transduction through IL-1RI and TNFR1.
Figure 4: Summary of putative actions of cytokines in neurodegeneration.

Similar content being viewed by others

References

  1. Perry, V. H., Bell, M. D., Brown, H. C. & Matyszak, M. K. Inflammation in the nervous system. Curr. Opin. Neurobiol. 5, 636–641 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Barone, F. C. & Feuerstein, G. Z. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19, 819–834 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Del Zoppo, G. et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 10, 95–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Karkkainen, I., Rybnikova, E., Pelto-Huikko, M. & Huovila, A. P. Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol. Cell. Neurosci. 15, 547–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, D. E. et al. Four new members expand the interleukin-1 superfamily. J. Biol. Chem. 275, 1169–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, S. et al. Identification and initial characterization of four novel members of the interleukin-1 family. J. Biol. Chem. 275, 10308–10314 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Debets, R. et al. Two novel IL-1 family members, IL-1δ and IL-1ɛ, function as an antagonist and agonist of NF-κB activation through the orphan IL-1 receptor-related protein 2. J. Immunol. 167, 1440–1446 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Pratt, B. M. & McPherson, J. M. TGF-β in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 8, 267–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Flanders, K. C., Ren, R. F. & Lippa, C. F. Transforming growth factor-βs in neurodegenerative disease. Prog. Neurobiol. 54, 71–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Oklu, R. & Hesketh, R. The latent transforming growth factor β binding protein (LTBP) family. Biochem. J. 352, 601–610 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bottner, M., Unsicker, K. & Suter-Crazzolara, C. Expression of TGF-β type II receptor mRNA in the CNS. Neuroreport 7, 2903–2907 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Tsuchida, K., Sawchenko, P. E., Nishikawa, S. & Vale, W. W. Molecular cloning of a novel type I receptor serine/threonine kinase for the TGFβ superfamily from rat brain. Mol. Cell. Neurosci. 7, 467–478 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Buttini, M., Sauter, A. & Boddeke, H. W. G. M. Induction of interleukin-1β mRNA after focal cerebral ischaemia in the rat. Brain Res. Mol. Brain Res. 23, 126–134 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, T. et al. Tumor necrosis factor-α expression in ischemic neurons. Stroke 25, 1481–1488 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, X. et al. Concomitant cortical expression of TNF-α and IL-1β mRNAs follow early response gene expression in transient focal ischemia. Mol. Chem. Neuropathol. 23, 103–114 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Griffin, W. S. T. et al. Microglial interleukin-1α expression in human head injury: correlations with neuronal and neuritic β-amyloid precursor protein expression. Neurosci. Lett. 176, 133–136 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krupinski, J., Kumar, P., Kumar, S. & Kaluza, J. Increased expression of TGF-β1 in brain tissue after ischemic stroke in humans. Stroke 27, 852–857 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Chao, C. C., Hu, S., Ehrlich, L. & Peterson, P. K. Interleukin-1 and tumor necrosis factor-α synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-d-aspartate receptors. Brain. Behav. Immun. 9, 355–365 (1995).An early study showing interactions between cytokines to influence neuronal death in vitro , using human fetal brain cell cultures composed of neurons and glia.

    Article  CAS  PubMed  Google Scholar 

  20. Hu, S., Peterson, P. K. & Chao, C. C. Cytokine-mediated neuronal apoptosis. Neurochem. Int. 30, 427–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, X. et al. TNF-α stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J. Neurosci. Res. 64, 121–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Reimann-Philipp, U., Ovase, R., Weigel, P. H. & Grammas, P. Mechanisms of cell death in primary cortical neurons and PC12 cells. J. Neurosci. Res. 64, 654–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Yamasaki, Y. et al. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26, 676–681 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Loddick, S. A. & Rothwell, N. J. Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J. Cereb. Blood Flow Metab. 16, 932–940 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lawrence, C. B., Allan, S. M. & Rothwell, N. J. Interleukin-1β and the interleukin-1 receptor antagonist act in the striatum to modify excitotoxic brain damage in the rat. Eur. J. Neurosci. 10, 1188–1195 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Barone, F. C. et al. Tumor necrosis factor-α: a mediator of focal ischemic brain injury. Stroke 28, 1233–1244 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Relton, J. K. & Rothwell, N. J. Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res. Bull. 29, 243–246 (1992).The first study to report that inhibition of endogenous IL-1 limits neuronal death induced by cerebral ischaemia or excitotoxicity in vivo.

    Article  CAS  PubMed  Google Scholar 

  28. Prehn, J. H., Backhauss, C. & Krieglstein, J. Transforming growth factor-β 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J. Cereb. Blood Flow Metab. 13, 521–525 (1993).An early study showing neuroprotective effects of TGFβ in vivo against cerebral ischaemia, and in vitro against glutamate toxicity on primary neuronal cultures.

    Article  CAS  PubMed  Google Scholar 

  29. Henrich-Noack, P., Prehn, J. H. & Krieglstein, J. TGF-β 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 27, 1609–1614 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Spera, P. A., Ellison, J. A., Feuerstein, G. Z. & Barone, F. C. IL-10 reduces rat brain injury following focal stroke. Neurosci. Lett. 251, 189–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Knoblach, S. M. & Faden, A. I. Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp. Neurol. 153, 143–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Akassoglou, K., Probert, L., Kontogeorgos, G. & Kollias, G. Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J. Immunol. 158, 438–445 (1997).

    CAS  PubMed  Google Scholar 

  33. Cheng, B., Christakos, S. & Mattson, M. P. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Strijbos, P. J. L. M. & Rothwell, N. J. Interleukin-1β attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J. Neurosci. 15, 3468–3474 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Bruce, A. J. et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med. 2, 788–794 (1996).The first study to indicate that endogenous TNFα is neuroprotective. Studies were conducted on genetically modified mice lacking both TNFα receptors. Neurons were exposed to cerebral ischaemia in vivo and to excitotoxins in primary neuronal cultures.

    Article  CAS  PubMed  Google Scholar 

  36. Toulmond, S., Fage, V. D. & Benavides, J. Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons. Neurosci. Lett. 144, 49–52 (1992).The first study to report neuroprotective effects of recombinant IL-6 in vivo.

    Article  CAS  PubMed  Google Scholar 

  37. Loddick, S. A., Turnbull, A. V. & Rothwell, N. J. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 18, 176–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Campbell, I. L. et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl Acad. Sci. USA 90, 10061–10065 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Nawashiro, H., Martin, D. & Hallenbeck, J. M. Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J. Cereb. Blood Flow Metab. 17, 229–232 (1996).An early study indicating that endogenous TNFα mediates ischaemic brain damage in vivo . TNF-binding protein — a naturally occurring inhibitor of TNF — reduced damage caused by focal cerebral ischaemia in mice.

    Article  Google Scholar 

  40. Mayne, M. et al. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-α expression is neuroprotective after intracerebral hemorrhage. Stroke 32, 240–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Gary, D. S., Bruce-Keller, A. J., Kindy, M. S. & Mattson, M. P. Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J. Cereb. Blood Flow Metab. 18, 1283–1287 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Scherbel, U. et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc. Natl Acad. Sci. USA 96, 8721–8726 (1999).This study might provide an explanation for seemingly conflicting reports indicating that endogenous TNFα is either neurotoxic (based largely on acute interventions) or neuroprotective (based largely on stadies on genetically modified animals). It reports that functional outcomes in TNFα-null mice were improved early after brain injury compared with wild type mice, but TNFα-null mice showed permanent deficits and reduced recovery.

    Article  CAS  PubMed  Google Scholar 

  43. Venters, H. D. et al. Tumor necrosis factor-α and insulin-like growth factor-I in the brain: is the whole greater than the sum of its parts. J. Neuroimmunol. (in the press).

  44. Dinarello, C. A. & Thompson, R. C. Blocking IL-1: interleukin-1 receptor antagonist in vivo and in vitro. Immunol. Today 12, 404–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Toulmond, S. & Rothwell, N. J. Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res. 671, 261–266 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Relton, J. K., Martin, D., Thompson, R. C. & Russell, D. A. Peripheral administration of Interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp. Neurol. 138, 206–213 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Betz, A. L., Yang, G.-Y. & Davidson, B. L. Attenuation of stroke size in rats using an adenoviral vector to induce over expression of interleukin-1 receptor antagonist in brain. J. Cereb. Blood Flow Metab. 15, 547–551 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Boutin, H. et al. Role of IL-1α and IL-1β in ischemic brain damage. J. Neurosci. 21, 5528–5534 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Loddick, S. A. et al. Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem. Biophys. Res. Commun. 234, 211–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Ruocco, A. et al. A transforming growth factor-β antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. J. Cereb. Blood Flow Metab. 19, 1345–1353 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Wyss-Coray, T., Borrow, P., Brooker, M. J. & Mucke, L. Astroglial overproduction of TGF-β 1 enhances inflammatory central nervous system disease in transgenic mice. J. Neuroimmunol. 77, 45–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Penkowa, M. et al. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. Glia 25, 343–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Clark, W. M. et al. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31, 1715–1720 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Ohtsuki, T., Ruetzler, C. A., Tasaki, K. & Hallenbeck, J. M. Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J. Cereb. Blood Flow Metab. 16, 1137–1142 (1996).The first demonstration that endogenous IL-1 can mediate ischaemic tolerance. Pre-treatment of gerbils three days before global ischaemia reduced brain injury. IL-1 was induced by a brief period of 'preconditionary' ischaemia.

    Article  CAS  PubMed  Google Scholar 

  55. Shohami, E., Bass, R., Wallach, D., Yamin, A. & Gallily, R. Inhibition of tumor necrosis factor alpha (TNFα) activity in rat brain is associated with cerebroprotection after closed head injury. J. Cereb. Blood Flow Metab. 16, 378–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Zhai, Q.-H., Futrell, N. & Chen, F.-J. Gene expression of IL-10 in relationship to TNF-α, IL-1β and IL-2 in the rat brain following middle cerebral artery occlusion. J. Neurol. Sci. 152, 119–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Zujovic, V., Benavides, J., Vige, X., Carter, C. & Taupin, V. Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia 29, 305–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Davies, C. A. et al. The progression and topographic distribution of interleukin-1β expression after permanent middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 19, 87–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Ferrari, D., Chiozzi, P., Falzoni, S., Hanau, S. & Di Virgilio, F. Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J. Exp. Med. 185, 579–582 (1997).An early study showing that IL-1β is released from microglia by activation of purinergic, P2X7 receptors. Bacterial LPS is required for activation of microglial IL-1β expression, whereas ATP induced cleavage and release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Di Virgilio, F. The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol. Today 16, 524–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Collo, G. et al. Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277–1283 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Krohn, K. TGF-β1-dependent differential expression of a rat homolog for latent TGF-β binding protein in astrocytes and C6 glioma cells. Glia 25, 332–342 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Benveniste, E. N., Sparacio, S. M., Norris, J. G., Grenett, H. E. & Fuller, G. M. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 30, 201–212 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Chao, C. C., Hu, S., Sheng, W. S., Tsang, M. & Peterson, P. K. Tumor necrosis factor-α mediates the release of bioactive transforming growth factor-β in murine microglial cell cultures. Clin. Immunol. Immunopathol. 77, 358–365 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Bethea, J. R., Chung, I. Y., Sparacio, S. M., Gillespie, G. Y. & Benveniste, E. N. Interleukin-1β induction of tumor necrosis factor-α gene expression in human astroglioma cells. J. Neuroimmunol. 36, 179–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Da Cunha, A. & Vitkovic, L. Transforming growth factor-β 1 (TGF-β1) expression and regulation in rat cortical astrocytes. J. Neuroimmunol. 36, 157–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Chao, C. C., Hu, S., Sheng, W. S. & Peterson, P. K. Tumor necrosis factor-α production by human fetal microglial cells: regulation by other cytokines. Dev. Neurosci. 17, 97–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Jander, S., Schroeter, M., Peters, O., Witte, O. W. & Stoll, G. Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J. Cereb. Blood Flow Metab. 21, 218–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Hopkins, S. J. & Rothwell, N. J. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci. 18, 83–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Layé, S. et al. Subdiaphragmatic vagotomy blocks induction of IL-1β mRNA in mice brain in response to peripheral LPS. Am. J. Physiol. 268, R1327–1331 (1995).

    Google Scholar 

  71. Hansen, M. K., Taishi, P., Chen, Z. T. & Krueger, J. M. Vagotomy blocks the induction of interleukin-1β (IL-1β) mRNA in the brain of rats in response to systemic IL-1β. J. Neurosci. 18, 2247–2253 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Busto, R. et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab. 7, 729–738 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Sattler, R. et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Savinainen, A., Garcia, E. P., Dorow, D., Marshall, J. & Liu, Y. F. Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein 95. J. Biol. Chem. 276, 11382–11386 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Chensue, S. W., Terebuh, P. D., Remick, D. G., Scales, W. E. & Kunkel, S. L. In vivo biologic and immunohistochemical analysis of interleukin-1α, β and tumor necrosis factor during experimental endotoxemia. Kinetics, Kupffer cell expression, and glucocorticoid effects. Am. J Pathol. 138, 395–402 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Reagan, L. P. & McEwen, B. S. Controversies surrounding glucocorticoid-mediated cell death in the hippocampus. J. Chem. Neuroanat. 13, 149–167 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Puffenbarger, R. A., Boothe, A. C. & Cabral, G. A. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29, 58–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Nagayama, T. et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J. Neurosci. 19, 2987–2995 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Mennicken, F., Maki, R., De Souza, E. B. & Quirion, R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol. Sci. 20, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Zujovic, V., Schussler, N., Jourdain, D., Duverger, D. & Taupin, V. In vivo neutralization of endogenous brain fractalkine increases hippocampal TNFα and 8-isoprostane production induced by intracerebroventricular injection of LPS. J. Neuroimmunol. 115, 135–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Han, Y., Wang, J., Zhou, Z. & Ransohoff, R. M. TGFβ1 selectively up-regulates CCR1 expression in primary murine astrocytes. Glia 30, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Hu, S. et al. Inhibition of microglial cell RANTES production by IL-10 and TGF-β. J. Leukoc. Biol. 65, 815–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Pang, L. et al. Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-β1 expression. Stroke 32, 544–552 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Irving, E. A., Barone, F. C., Reith, A. D., Hadingham, S. J. & Parsons, A. A. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Mol. Brain Res. 77, 65–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Legos, J. J. et al. SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res. 892, 70–77 (2001).The first study to show that selective inhibition of p38 MAPK, which is involved in IL-1 and TNFα signalling, inhibits brain damage caused by cerebral ischaemia.

    Article  CAS  PubMed  Google Scholar 

  86. Namura, S. et al. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc. Natl Acad. Sci. USA 10.1073/pnas.181213498 (2001).

  87. Kinouchi, K., Brown, G., Pasternak, G. & Donner, D. B. Identification and characterization of receptors for tumor necrosis factor-α in the brain. Biochem. Biophys. Res. Commun. 181, 1532–1538 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Loddick, S. A., Liu, C., Takao, T., Hashimoto, K. & De Souza, E. B. Interleukin-1 receptors: cloning studies and role in central nervous system disorders. Brain Res. Brain Res. Rev. 26, 306–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Rothwell, N. J. & Luheshi, G. N. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 23, 618–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Greenfeder, S. A. et al. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. O'Neill, L. A. & Dinarello, C. A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    Article  CAS  Google Scholar 

  92. Laflamme, N. & Rivest, S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 15, 155–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Carrié, A. et al. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nature Genet. 23, 25–31 (1999).A direct link between one of the recently identified members of the IL-1/Toll receptor family in brain function. Cognitive function in patients with X-linked mental retardation is strongly associated with a nonsense mutation in a gene identified as IL-1-receptor-like protein (IL-1R AcPL).

    Article  PubMed  Google Scholar 

  94. Wrana, J. L. et al. TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Heldin, C. H., Miyazono, K. & Ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Watanabe, D. et al. Characteristic localization of gp130 (the signal-transducing receptor component used in common for IL-6/IL-11/CNTF/LIF/OSM) in the rat brain. Eur. J. Neurosci. 8, 1630–1640 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Taga, T. Gp130, a shared signal transducing receptor component for hematopoietic and neuropoietic cytokines. J. Neurochem. 67, 1–10 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Mizuno, T., Sawada, M., Marunouchi, T. & Suzumura, A. Production of interleukin-10 by mouse glial cell in culture. Biochem. Biophys. Res. Commun. 205, 1907–1915 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Strle, K. et al. IL-10 promotes survival of microglia without activating AKT. J. Neuroimmunol. (in the press).

  100. Venters, H. D. et al. A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc. Natl Acad. Sci. USA 96, 9879–9884 (1999).This study provided a potential explanation for indirect effects of the proinflammatory cytokine TNFα on neuronal survival through modification of the signalling pathway of a protective growth factor, IGF. This mechanism might apply to other neurotoxic cytokines.

    Article  CAS  PubMed  Google Scholar 

  101. Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Plata-Salamán, C. R. & Ffrench-Mullen, J. M. H. Interleukin-1β depresses calcium currents in CA1 hippocampal neurons at pathophysiological concentration. Brain Res. Bull. 29, 221–223 (1992).

    Article  PubMed  Google Scholar 

  103. Murray, C. A., McGahon, B., McBennett, S. & Lynch, M. A. Interleukin-1β inhibits glutamate release in hippocampus of young, but not aged, rats. Neurobiol. Aging 18, 343–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Katsuki, H. et al. Interleukin-1β inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur. J. Pharmacol. 181, 323–326 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Zeise, M. L., Madamba, S. & Siggins, G. R. Interleukin-1β increases synaptic inhibition in rat hippocampal pyramidal neurons in vitro. Regul. Pept. 39, 1–7 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Serou, M. J., DeCoster, M. A. & Bazan, N. G. Interleukin-1β activates expression of cyclooxygenase-2 and inducible nitric oxide synthase in primary hippocampal neuronal culture: platelet-activating factor as a preferential mediator of cyclooxygenase-2 expression. J. Neurosci. Res. 58, 593–598 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Strijbos, P. J., Relton, J. K. & Rothwell, N. J. Corticotrophin-releasing factor antagonist inhibits neuronal damage induced by focal cerebral ischaemia or activation of NMDA receptors in the rat brain. Brain Res. 656, 405–408 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Roe, S. Y., McGowan, E. M. & Rothwell, N. J. Evidence for the involvement of corticotrophin-releasing hormone in the pathogenesis of traumatic brain injury. Eur. J. Neurosci. 10, 553–559 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Prehn, J. H. M. & Miller, R. J. Opposite effects of TGF-β1 on rapidly- and slowly-triggered excitotoxic injury. Neuropharmacology 35, 249–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Luo, J., Lang, J. A. & Miller, M. W. Transforming growth factor β1 regulates the expression of cyclooxygenase in cultured cortical astrocytes and neurons. J. Neurochem. 71, 526–534 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Giulian, D., Vaca, K. & Corpuz, M. Brain glia release factors with opposing actions upon neuronal survival. J. Neurosci. 13, 29–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Raivich, G. et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Brain Res. Rev. 30, 77–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Koller, H., Trimborn, M., Von Giesen, H., Schroeter, M. & Arendt, G. TNFα reduces glutamate induced intracellular Ca2+ increase in cultured cortical astrocytes. Brain Res. 893, 237–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Carman-Krzan, M., Vigé, X. & Wise, B. C. Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglia cultures. J. Neurochem. 56, 636–643 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Boje, K. M. & Arora, P. K. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587, 250–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Heyes, M. P. & Nowak, T. S. Jr. Delayed increases in regional brain quinolinic acid follow transient ischemia in the gerbil. J. Cereb. Blood Flow Metab. 10, 660–667 (1990).

    Article  CAS  PubMed  Google Scholar 

  117. Kordula, T., Bugno, M., Rydel, R. E. & Travis, J. Mechanism of interleukin-1- and tumor necrosis factor α-dependent regulation of the α1-antichymotrypsin gene in human astrocytes. J. Neurosci. 20, 7510–7516 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Bellander, B.-M., Von Holst, H., Fredman, P. & Svensson, M. Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J. Neurosurg. 85, 468–475 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Buisson, A. et al. Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1. FASEB J. 12, 1683–1691 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Lindholm, D., Hengerer, B., Zafra, F. & Thoenen, H. Transforming growth factor-β 1 stimulates expression of nerve growth factor in the rat CNS. Neuroreport 1, 9–12 (1990).

    Article  CAS  PubMed  Google Scholar 

  121. Krieglstein, K. et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-β for exerting its full neurotrophic potential on peripheral and CNS neurons. J. Neurosci. 18, 9822–9834 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Xiao, B. G., Bai, X. F., Zhang, G. X. & Link, H. Transforming growth factor-β1 induces apoptosis of rat microglia without relation to bcl-2 oncoprotein expression. Neurosci. Lett. 226, 71–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, B. et al. Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. 77, 182–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Schielke, G. P., Yang, G. Y., Shivers, B. D. & Betz, A. L. Reduced ischemic brain injury in interleukin-1β converting enzyme-deficient mice. J. Cereb. Blood Flow Metab. 18, 180–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Crumrine, R. C., Thomas, A. L. & Morgan, P. F. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J. Cereb. Blood Flow Metab. 14, 887–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Loddick, S. A., MacKenzie, A. & Rothwell, N. J. An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport 7, 1465–1468 (1996).The first study reporting that inhibition of caspase activity protects against neuronal death (ischaemic brain damage) in vivo.

    Article  CAS  PubMed  Google Scholar 

  128. Park, C. et al. Expression of Fas antigen in the normal mouse brain. Biochem. Biophys. Res. Commun. 252, 623–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Friedlander, R. M., Gagliardini, V., Rotello, R. J. & Yuan, J. Y. Functional role of interleukin 1β (IL-1β) in IL-1β-converting enzyme-mediated apoptosis. J. Exp. Med. 184, 717–724 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Troy, C. M., Stefanis, L., Prochiantz, A., Greene, L. A. & Shelanski, M. L. The contrasting roles of ICE family proteases and interleukin-1β in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc. Natl Acad. Sci. USA 93, 5635–5640 (1996).An early study reporting the contribution of ICE (caspase 1) to apoptosis in a neuronal cell line (PC12 cells) and indicating that ICE acts through modification of superoxide dismutase 1.

    Article  CAS  PubMed  Google Scholar 

  131. Prehn, J. H. et al. Protective effect of transforming growth factor-β1 on β-amyloid neurotoxicity in rat hippocampal neurons. Mol. Pharmacol. 49, 319–328 (1996).

    CAS  PubMed  Google Scholar 

  132. Zhu, Y., Ahlemeyer, B., Bauerbach, E. & Krieglstein, J. TGF-β1 inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem. Int. 38, 227–235 (2001).

    Article  PubMed  Google Scholar 

  133. Schlapbach, R. et al. TGF-β induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur. J. Immunol. 30, 3680–3688 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Giulian, D., Woodward, J., Young, D. G., Krebs, J. F. & Lachman, L. B. Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularisation. J. Neurosci. 8, 2485–2490 (1988).One of the first reports of IL-1 actions on nerve cells that might be relevant to neurodegeneration and repair.

    Article  CAS  PubMed  Google Scholar 

  135. Quagliarello, V. J., Wispelwey, B., Long, W. J. Jr & Scheld, W. M. Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J. Clin. Invest. 87, 1360–1366 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bonmann, E., Suschek, C., Spranger, M. & Kolb-Bachofen, V. The dominant role of exogenous or endogenous interleukin-1β on expression and activity of inducible nitric oxide synthase in rat microvascular brain endothelial cells. Neurosci. Lett. 230, 109–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Wong, D. & Dorovini-Zis, K. Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J. Neuroimmunol. 39, 11–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  138. Holmin, S. & Mathiesen, T. Intracerebral administration of interleukin-1β and induction of inflammation, apoptosis, and vasogenic edema. J. Neurosurg. 92, 108–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Szelenyi, J. Cytokines and the central nervous system. Brain Res. Bull. 54, 329–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Azzimondi, G. et al. Fever in acute stroke worsens prognosis. A prospective study. Stroke 26, 2040–2043 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Rothwell, N. J. & Hopkins, S. J. Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci. 18, 130–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Hara, K., Kong, D. L., Sharp, F. R. & Weinstein, P. R. Effect of selective inhibition of cyclooxygenase 2 on temporary focal cerebral ischemia in rats. Neurosci. Lett. 256, 53–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Roman, J., Ritzenthaler, J. D., Fenton, M. J., Roser, S. & Schuyler, W. Transcriptional regulation of the human interleukin 1β gene by fibronectin: role of protein kinase C and activator protein 1 (AP-1). Cytokine 12, 1581–1596 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Vaday, G. G. & Lider, O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J. Leukoc. Biol. 67, 149–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Hoffman, K. B., Pinkstaff, J. K., Gall, C. M. & Lynch, G. Seizure induced synthesis of fibronectin is rapid and age dependent: implications for long-term potentiation and sprouting. Brain Res. 812, 209–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Sakai, T. et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin- wound healing and hemostasis. Nature Med. 7, 324–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Karp, C. L., Boxel-Dezaire, A. H., Byrnes, A. A. & Nagelkerken, L. Interferon-β in multiple sclerosis: altering the balance of interleukin-12 and interleukin-10? Curr. Opin. Neurol. 14, 361–368 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Bresnihan, B. The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin. Arthritis Rheum. 30, 17–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Gutierrez, E. G., Banks, W. A. & Kastin, A. J. Blood-borne interleukin-1 receptor antagonist crosses the blood–brain barrier. J. Neuroimmunol. 55, 153–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Jankowsky, J. L. & Patterson, P. H. The role of cytokines and growth factors in seizures and their sequelae. Prog. Neurobiol. 63, 125–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Vezzani, A. et al. Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Vezzani, A. et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl Acad. Sci. USA 97, 11534–11539 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Sheng, J. G., Boop, F. A., Mrak, R. E. & Griffin, W. S. Increased neuronal β-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1α immunoreactivity. J. Neurochem. 63, 1872–1879 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kanemoto, K., Kawasaki, J., Miyamoto, T., Obayashi, H. & Nishimura, M. Interleukin (IL)1β, IL-1α, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann. Neurol. 47, 571–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Allan, S. M. et al. Cortical cell death induced by interleukin-1 is mediated via actions in the hypothalamus of the rat. Proc. Natl Acad. Sci. USA 97, 5580–5585 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Ben-Ari, Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403 (1985).

    Article  CAS  PubMed  Google Scholar 

  157. Vitkovic, L. et al. Cytokine signals propagate through the brain. Mol. Psychiatry 5, 604–615 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Medical Research Council. We thank Rosemary Gibson for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Allan.

Supplementary information

Related links

Related links

DATABASES

LocusLink

BCL2

BCLX

caspase 1

COX2

FADD

FLIP

gp130

IKK

IL-1α

IL-1β

IL-1ra

IL-1RAcP

IL-1RAPL

IL-1RI

IL-6

IL-6R

IL-10

iNOS

intercellular cell-adhesion molecule 1

LTBP2

MyD88

P2X7 receptor

p53

PAI1

RIP1

TβR-I

TβR-II

TGFβ1

TLR4

TNFα

TNFR1

TNFR2

TRADD

FURTHER INFORMATION

Neuroimmunology Group Homepage

Glossary

CYTOKINES

In general terms, cytokines are proteins made by cells that affect the behaviour of other cells. They are produced mainly by the immune system.

MORBIDITY

The incidence or prevalence of a disease in a population.

ACUTE-PHASE PROTEINS

Molecules that are found in the blood shortly after an infection. They participate in early phases of host defence.

EICOSANOIDS

Polyunsaturated fatty acids that have widespread biological activities, such as muscle contraction, platelet aggregation and inflammation. Common examples include arachidonic acid, the leukotrienes and the prostanoids.

COMPLEMENT SYSTEM

A set of plasma proteins that attack extracellular pathogens. The pathogen becomes coated with complement proteins that facilitate pathogen removal by phagocytes.

INTERLEUKINS

A generic term for cytokines originally identified as products of leukocytes.

INTERFERONS

Cytokines that promote resistance to viral replication in cells.

CHEMOKINES

Small, secreted proteins that stimulate the motile behaviour of leukocytes.

CASPASES

Cysteine proteases involved in apoptosis, which cleave at specific aspartate residues.

NFκB

A heterodimeric transcription factor for eukaryotic RNA polymerase II promoters.

MITOGEN-ACTIVATED PROTEIN KINASE CASCADE

A signalling cascade that relays signals from the plasma membrane to the nucleus. MAPKs are activated by a wide range of proliferation- or differentiation-inducing signals.

FRACTALKINE

A membrane-bound chemokine that is highly expressed on activated endothelial cells, and is both an adhesion molecule and an attractant for T cells and monocytes.

RANTES

A chemokine that inhibits the infection of T cells by primary HIV-1 strains. RANTES stands for 'regulated upon activation, normal T-cell expressed, and presumably secreted'.

NEUROPOIETIC CYTOKINES

Cytokines that regulate cell number in the nervous system and might influence neuronal properties, such as the type of neurotransmitter used by certain neurons. They include ciliary neurotrophic factor and leukaemia-inhibitory factor.

IMMEDIATE-EARLY GENES

Genes that are expressed as one of the earliest responses of cells to factors that initiate the transition between the quiescent and activated states.

HEAT-SHOCK PROTEINS

Molecues that are synthesized in response to increased temperature. They function mainly as chaperones, protecting proteins as they become unfolded due to heating and enabling them to refold correctly.

EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

A rodent model of multiple sclerosis that is characterized by episodes of spasticity and tremor.

NEUROPROTECTIVE PRECONDITIONING

A phenomenon whereby a brief interruption of blood supply to the brain protects the tissue from a subsequent ischaemic episode.

SPREADING DEPRESSION

A slowly moving depression of electrical activity in the cerebral cortex. It consists of a wave of depolarization that can last for up to two minutes and travels at a speed between three and 12 millimeters per minute. Wave passage is accompanied by increased blood flow, and is followed by a prolonged period of vasodilation. Spreading depression seems to be related to migraine, and has been observed to accompany cerebral ischaemia.

PSD95

A protein of the postsynaptic density, which can interact with NMDA receptors. It is thought to participate in regulating the spatial distribution of this receptor subtype.

C-JUN N-TERMINAL KINASES

A family of kinases distantly related to extracellular-signal-regulated kinases (ERKs) that are activated by dual phosphorylation on tyrosine and threonine residues.

GLUCOCORTICOIDS

Hormones produced by the adrenal cortex, which are involved in carbohydrate and protein metabolism, but also affect brain function. Cortisol (human) and corticosterone (rodent) are prime examples.

CANNABINOIDS

Derivatives of 2-(2,2-isopropyl-5-methylphenyl)-5-pentyl-resorcinol, a molecule found in the plant Cannabis sativa. Cannabinoids are responsible for the psychoactive effects of marijuana.

LIPOPOLYSACCHARIDE

A toxic component of the outer cell wall of gram-negative bacteria.

CIRCUMVENTRICULAR ORGANS

Some of the structures located around the wall of the ventricular system, which are characterized by the absence of blood–brain barrier.

SMADS

A family of transcription factors that mediate TGFβ signals. The term SMAD is derived from the founding members of this family, the Drosophila αprotein MAD (mothers against decapentaplegic) and the Caenorhabditis elegans protein SMA (small body size).

STATS

A family of cytoplasmic transcription factors (signal transducers and activators of transcription) that dimerize on phosphorylation and translocate to the nucleus to activate the transcription of target genes.

BCL PROTEINS

Molecules that are associated with B-cell leukaemia and lymphoma. BCL2 is a mitochondrial protein of the inner membrane, which can block apoptosis. BCLX is also a regulator of apoptosis, which exists in two forms: long and short.

LONG-TERM POTENTIATION

A long-lasting increase in the efficacy of synaptic transmission, commonly elicited by high-frequency neuron stimulation.

FAS

A transmembrane protein that mediates apoptosis and might be involved in the negative selection of autoreactive T cells in the thymus.

VASOGENIC OEDEMA

The accumulation of extracellular fluid that results from changes in capillary permeability, allowing for the seepage of plasma molecules and water.

PYROGEN

Any agent capable of producing fever.

MULTIPLE SCLEROSIS

A neurodegenerative disorder characterized by demyelination of central nervous system tracts. Symptoms depend on the site of demyelination and include sensory loss, weakness in leg muscles, speech difficulties, loss of coordination and dizziness.

SEPSIS

Infection of the soft tissues or blood by pathogens that results in tissue destruction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, S., Rothwell, N. Cytokines and acute neurodegeneration. Nat Rev Neurosci 2, 734–744 (2001). https://doi.org/10.1038/35094583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing