Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice


CDKN2A (INK4a/ARF) is frequently disrupted in various types of human cancer, and germline mutations of this locus can confer susceptibility to melanoma and other tumours1. However, because CDKN2A encodes two distinct cell cycle inhibitory proteins, p16INK4a and p14ARF (p19Arf in mice)2, the mechanism of tumour suppression by CDKN2A has remained controversial. Genetic disruption of Cdkn2a(p19Arf) (hereafter Arf) alone predisposes mice to tumorigenesis3, demonstrating that Arf is a tumour-suppressor gene in mice. We mutated mice specifically in Cdkn2a(p16Ink4a) (hereafter Ink4a). Here we demonstrate that these mice, designated Ink4a*/*, do not show a significant predisposition to spontaneous tumour formation within 17 months. Embryo fibroblasts derived from them proliferate normally, are mortal, and are not transformed by oncogenic HRAS. The very mild phenotype of the Ink4a*/* mice implies that the very strong phenotypes of the original Ink4a/ArfΔ2,3 mice were primarily or solely due to loss of Arf. However, Ink4a*/Δ2,3 mice that are deficient for Ink4a and heterozygous for Arf spontaneously develop a wide spectrum of tumours, including melanoma. Treatment of these mice with the carcinogen 7,12-dimethylbenzanthracene (DMBA) results in an increased incidence of melanoma, with frequent metastases. Our results show that, in the mouse, Ink4a is a tumour-suppressor gene that, when lost, can recapitulate the tumour predisposition seen in humans.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation of Ink4a mutant mice.
Figure 2: Growth characteristics of Ink4a*/* MEFs.
Figure 3: Ink4a is a tumour-suppressor gene.
Figure 4: Histology of melanocytic tumours in Ink4a*/Δ2,3 mice.


  1. 1

    Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, F115–F177 (1998).

  2. 2

    Sherr, C. J. Tumor surveillance via the ARF–p53 pathway. Genes Dev. 12, 2984–2991 (1998).

  3. 3

    Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

  4. 4

    Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

  5. 5

    Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

  6. 6

    Arap, W., Knudsen, E. S., Wang, J. Y., Cavenee, W. K. & Huang, H. J. Point mutations can inactivate in vitro and in vivo activities of p16(INK4a)/CDKN2A in human glioma. Oncogene 14, 603–609 (1997).

  7. 7

    Harvey, M. et al. growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467 (1993).

  8. 8

    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

  9. 9

    Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol. 2, 148–155 (2000).

  10. 10

    Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 14, 3037–3050 (2000).

  11. 11

    Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

  12. 12

    Wright, W. E. & Shay, J. W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev. 11, 98–103 (2001).

  13. 13

    Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

  14. 14

    Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

  15. 15

    Peeper, D. S., Dannenberg, J. H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol. 3, 198–203 (2001).

  16. 16

    Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

  17. 17

    Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

  18. 18

    Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

  19. 19

    Kamijo, T., Bodner, S., van de Kamp, E., Randle, D. H. & Sherr, C. J. Tumor spectrum in ARF-deficient mice. Cancer Res. 59, 2217–2222 (1999).

  20. 20

    Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

  21. 21

    Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

  22. 22

    Rizos, H., Becker, T. M., Holland, E. A., Kefford, R. F. & Mann, G. J. Differential expression of p16INK4a and p16β transcripts in B-lymphoblastoid cells from members of hereditary melanoma families without CDKN2A exon mutations. Oncogene 15, 515–523 (1997).

  23. 23

    Randerson-Moor, J. A. et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum. Mol. Genet. 10, 55–62 (2001).

  24. 24

    Burri, N. et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab. Invest. 81, 217–229 (2001).

  25. 25

    Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998).

  26. 26

    Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

  27. 27

    Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

Download references


We thank D. Peeper and M. van Lohuizen for advice and retroviral vectors, M. van der Valk for histological analysis, K. Rajewsky for the Deleter Cre mice, C. Sherr for Arf-/- MEFs, G. Nolan for ΦNX-E retroviral producer cells, and J. Vink and K. van Veen for technical assistance, and the Netherlands Cancer Institute animal facility for providing animal care. Part of this work was supported by the Dutch Cancer Society.

Author information

Correspondence to Anton Berns.

Supplementary information

Two supplementary figures with legends

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.