Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sub-Planck structure in phase space and its relevance for quantum decoherence


Heisenberg's principle1 states that the product of uncertainties of position and momentum should be no less than the limit set by Planck's constant, /2. This is usually taken to imply that phase space structures associated with sub-Planck scales () do not exist, or at least that they do not matter. Here I show that this common assumption is false: non-local quantum superpositions (or ‘Schrödinger's cat’ states) that are confined to a phase space volume characterized by the classical action A, much larger than , develop spotty structure on the sub-Planck scale, a = 2/A. Structure saturates on this scale particularly quickly in quantum versions of classically chaotic systems—such as gases that are modelled by chaotic scattering of molecules—because their exponential sensitivity to perturbations2 causes them to be driven into non-local ‘cat’ states. Most importantly, these sub-Planck scales are physically significant: a determines the sensitivity of a quantum system or environment to perturbations. Therefore, this scale controls the effectiveness of decoherence and the selection of preferred pointer states by the environment3,4,5,6,7,8. It will also be relevant in setting limits on the sensitivity of quantum meters.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Snapshots of the quantum Wigner distribution and of the classical probability density in phase space of an evolving chaotic system.
Figure 2: The compass state, equation (9).
Figure 3: Snapshots of area 2π extracted from Fig. 1a–c.


  1. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik. Z. Phys. 43, 172–198 (1927); The physical content of quantum kinematics and mechanics (Engl. Trans.) in Quantum Theory and Measurement (eds Wheeler, J. A. & Zurek, W. H.) (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  2. Zurek, W. H. Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time. Phys. Script. T76, 186–198 (1998).

    MathSciNet  CAS  Article  Google Scholar 

  3. Zurek, W. H. Pointer basis of a quantum apparatus: Into what mixture does the wavepacket collapse? Phys. Rev. D 24, 1516–1524 (1981).

    MathSciNet  Article  Google Scholar 

  4. Zurek, W. H. Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982).

    MathSciNet  Article  Google Scholar 

  5. Joos, E. & Zeh, H. D. The emergence of classical properties through the interaction with the environment. Z. Phys. B 59, 229 (1985).

    Article  Google Scholar 

  6. Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 36–46 (1991).

    Article  Google Scholar 

  7. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, L.-O. & Zeh, H. D. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996).

    Book  Google Scholar 

  8. Zurek, W. H. Decoherence, einselection, and the quantum origin of the classical. Rev. Mod. Phys. (in the press); also as preprint (quant-ph 010527) at 〈〉 (2001).

  9. Haake, F. Quantum Signatures of Chaos (Springer, Berlin, 1991).

    MATH  Google Scholar 

  10. Casati, G. & Chrikov, B. Quantum Chaos (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  11. Hillery, M., O'Connell, R. F., Scully, M. O. & Wigner, E. P. Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121–167 (1984).

    MathSciNet  Article  Google Scholar 

  12. Berry, M. V. & Balazs, N. L. Evolution of semiclassical quantum states in phase space. J. Phys. A 12, 625–642 (1979).

    MathSciNet  Article  Google Scholar 

  13. Korsch, H. J. & Berry, M. V. Evolution of Wigner's phase-space density under a nonintegrable quantum map. Physica D 3, 627–636 (1981).

    MathSciNet  Article  Google Scholar 

  14. Zurek, W. H. & Paz, J. P. Decoherence, chaos, and the Second Law. Phys. Rev. Lett. 72, 2508–2511 (1994).

    CAS  Article  Google Scholar 

  15. Berman, G. P. & Zaslavsky, G. M. Condition of stochasticity in quantum non-linear systems. Physica (Amsterdam) 91A, 450 (1978).

    Article  Google Scholar 

  16. Habib, S., Shizume, K. & Zurek, W. H. Decoherence, chaos, and the correspondence principle. Phys. Rev. Lett. 80, 4361 (1998).

    MathSciNet  CAS  Article  Google Scholar 

  17. Caldeira, A. O. & Leggett, A. J. Path-integral approach to quantum Brownian motion. Physica 121A, 587–616 (1983).

    MathSciNet  CAS  Article  Google Scholar 

  18. Paz, J. P. & Zurek, W. H. in Les Houches Lectures Session LXXII (eds Kaiser, R., Westbrook, C. and David, F.) 533–614 (Springer, Berlin, 2001).

    Google Scholar 

  19. Braun, D., Haake, F. & Strunz, W. A. Universality of decoherence. Phys. Rev. Lett. 86, 2913–2917 (2001).

    CAS  Article  Google Scholar 

  20. Hannay, J. H. & Berry, M. V. Quantization of linear maps on a torus—Fresnel diffraction by a periodic grating. Physica 1D, 267–290 (1980).

    MathSciNet  MATH  Google Scholar 

  21. Caves, C. in Physical Origins of Time Asymmetry (eds Halliwell, J. J., Pérez-Mercader, J. & Zurek, W. H.) 47–77 (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  22. Miller, P. A. & Sarkar, S. Signatures of chaos in the entanglement of two coupled quantum kicked tops. Phys. Rev. E 60, 1542 (1999).

    CAS  Article  Google Scholar 

  23. Braginsky, V. B. & Khalili, F. Y. Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 95, 703–711 (1996).

    MathSciNet  Google Scholar 

  24. Karkuszewski, Z., Zakrzewski, J. & Zurek, W. H. Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times. Preprint quant-ph/0010011 at 〈〉 (2000).

Download references


This research was supported in part by the National Security Agency. I thank A. Albrecht, N. Balazs, C. Jarzynski, Z. Karkuszewski and J. P. Paz for useful chaotic conversations.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wojciech Hubert Zurek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zurek, W. Sub-Planck structure in phase space and its relevance for quantum decoherence. Nature 412, 712–717 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing