Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction

Abstract

Ice-core measurements of carbon dioxide1,2 and the deuterium palaeothermometer reveal significant covariation of temperature and atmospheric CO2 concentrations throughout the climate cycles of the past ice ages. This covariation provides compelling evidence that CO2 is an important forcing factor for climate3,4,5. But this interpretation is challenged by some substantial mismatches of the CO2 and deuterium records, especially during the onset of the last glaciation, about 120 kyr ago. Here we incorporate measurements of deuterium excess from Vostok6,7 in the temperature reconstruction and show that much of the mismatch is an artefact caused by variations of climate in the water vapour source regions. Using a model that corrects for this effect, we derive a new estimate for the covariation of CO2 and temperature, of r2 = 0.89 for the past 150 kyr and r2 = 0.84 for the period 350–150 kyr ago. Given the complexity of the biogeochemical systems involved, this close relationship strongly supports the importance of carbon dioxide as a forcing factor of climate. Our results also suggest that the mechanisms responsible for the drawdown of CO2 may be more responsive to temperature than previously thought.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Comparison of carbon dioxide and deuterium histories in Vostok ice3.
Figure 2: Comparison of carbon dioxide and reconstructed Southern Hemisphere temperature, ΔTH.
Figure 3: Effect of phase-shifting the deuterium-excess data.

References

  1. Petit, J. R. et al. 420,000 years of climate and atmospheric history revealed by the Vostok deep Antarctic ice core. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Pepin, L., Raynaud, D., Barnola, J. M. & Loutre, M. F. Hemispheric roles of climate forcings during glacial-interglacial transitions as deduced from the Vostok record and LLN-2D model experiments. J. Geophys. Res. (in the press).

  3. Genthon, C. et al. Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329, 414–418 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. & LeTreut, H. Greenhouse warming, climate sensitivity and ice core data. Nature 347, 139–145 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Vimeux, F., Masson, V., Jouzel, J., Stievenard, M. & Petit, J. R. Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398, 410–413 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Vimeux, F. et al. A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok. J. Geophys. Res. (in the press).

  8. Jouzel, J. et al. Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature 364, 407–412 (1993).

    Article  ADS  Google Scholar 

  9. Schrag, D. P., Haupt, G. & Murray, D. W. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 1930–1932 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–447 (1964).

    Article  ADS  Google Scholar 

  11. Johnsen, S. J., Dansgaard, W. & White, J. W. C. The origin of Arctic precipitation under present and glacial conditions. Tellus 41, 452–468 (1989).

    Article  Google Scholar 

  12. Petit, J. R., White, J. W. C., Young, N. W., Jouzel, J. & Korotkevich, Y. S. Deuterium excess in recent Antarctic snow. J. Geophys. Res. D 96, 5113–5122 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Merlivat, L. & Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. C 84, 5029–5033 (1979).

    Article  ADS  Google Scholar 

  14. Jouzel, J. et al. Simulations of the HDO and H218O atmospheric cycles using the NASA/GISS General Circulation Model: The seasonal cycle for present day conditions. J. Geophys. Res. 92, 14739–14760 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Khodri, M. et al. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–574 (2001).

    Article  ADS  CAS  Google Scholar 

  16. Delaygue, G. Relations entre Surface Océanique et Composition Isotopique des Précipitations Antarctiques: Simulations pour Différents Climats. Thesis, Univ. Aix-Marseille 3 (2000).

    Google Scholar 

  17. Vimeux, F. et al. Holocene hydrological cycle changes in the Southern Hemisphere documented in east Antarctic deuterium excess records. Clim. Dyn. 17, 503–513 (2000).

    Article  Google Scholar 

  18. Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130–163 (Geophysical Monograph 29, American Geophysical Union, Washington DC, 1984).

    Book  Google Scholar 

  19. Cuffey, K. et al. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Braconnot, P., Marti, O. & Joussaume, S. Adjustments and feedbacks in a global coupled ocean-atmosphere model. Clim. Dyn. 13, 507–519 (1997).

    Article  Google Scholar 

  21. Veizer, J., Godderis, Y. & Francois, L. M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass-spectrometric U–Th ages from Barbados corals. Nature 345, 405–410 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Esat, T. M., McCulloch, M. T., Chappell, J., Pillans, B. & Omura, A. Rapid fluctuations in sea level recorded at Huon Peninsula during the penultimate deglaciation. Science 283, 197–201 (1999).

    Article  CAS  Google Scholar 

  25. Stirling, C. H., Esat, T. M., Lambeck, K. & McCulloch, M. T. Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 160, 745–762 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Chappell, J. et al. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet. Sci. Lett. 141, 227–236 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  28. Bassinot, F. C. et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994).

    Article  ADS  Google Scholar 

  29. Loutre, M. F. Paramètres Orbitaux et Cycles Diurne et Saisonnier des Insolations. Thesis, Univ. Catholique de Louvain (1993).

    Google Scholar 

  30. Jouzel, J. et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. C 102, 26471–26487 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. R. Petit et al. for access to the data of ref. 1, and I. Fung and the staff of the Berkeley Atmospheric Sciences Center, J. Jouzel, V. Masson, J. Kirchner and R. Alley for discussions. This work was supported by the US NSF; the Vostok project was supported in France by the PNEDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt M. Cuffey.

Supplementary information

Figure 1

(JPG 90.8 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuffey, K., Vimeux, F. Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412, 523–527 (2001). https://doi.org/10.1038/35087544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087544

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing